Ohm solver: Ion Beam R Instability
In this example a low density ion beam interacts with a “core” plasma population which induces an instability. Based on the relative density between the beam and the core plasma a resonant or non-resonant condition can be accessed.
Run
The same input script can be used for 1d, 2d or 3d simulations as well as replicating either the resonant or non-resonant condition as indicated below.
Script inputs_test_1d_ohm_solver_ion_beam_picmi.py
#!/usr/bin/env python3
#
# --- Test script for the kinetic-fluid hybrid model in WarpX wherein ions are
# --- treated as kinetic particles and electrons as an isothermal, inertialess
# --- background fluid. The script simulates an ion beam instability wherein a
# --- low density ion beam interacts with background plasma. See Section 6.5 of
# --- Matthews (1994) and Section 4.4 of Munoz et al. (2018).
import argparse
import os
import sys
import time
import dill
import numpy as np
from mpi4py import MPI as mpi
from pywarpx import callbacks, fields, libwarpx, particle_containers, picmi
constants = picmi.constants
comm = mpi.COMM_WORLD
simulation = picmi.Simulation(warpx_serialize_initial_conditions=True, verbose=0)
class HybridPICBeamInstability(object):
"""This input is based on the ion beam R instability test as described by
Munoz et al. (2018).
"""
# Applied field parameters
B0 = 0.25 # Initial magnetic field strength (T)
beta = 1.0 # Plasma beta, used to calculate temperature
# Plasma species parameters
m_ion = 100.0 # Ion mass (electron masses)
vA_over_c = 1e-4 # ratio of Alfven speed and the speed of light
# Spatial domain
Nz = 1024 # number of cells in z direction
Nx = 8 # number of cells in x (and y) direction for >1 dimensions
# Temporal domain (if not run as a CI test)
LT = 120.0 # Simulation temporal length (ion cyclotron periods)
# Numerical parameters
NPPC = [1024, 256, 64] # Seed number of particles per cell
DZ = 1.0 / 4.0 # Cell size (ion skin depths)
DT = 0.01 # Time step (ion cyclotron periods)
# Plasma resistivity - used to dampen the mode excitation
eta = 1e-7
# Number of substeps used to update B
substeps = 10
# Beam parameters
n_beam = [0.02, 0.1]
U_bc = 10.0 # relative drifts between beam and core in Alfven speeds
def __init__(self, test, dim, resonant, verbose):
"""Get input parameters for the specific case desired."""
self.test = test
self.dim = int(dim)
self.resonant = resonant
self.verbose = verbose or self.test
# sanity check
assert dim > 0 and dim < 4, f"{dim}-dimensions not a valid input"
# calculate various plasma parameters based on the simulation input
self.get_plasma_quantities()
self.n_beam = self.n_beam[1 - int(resonant)]
self.u_beam = 1.0 / (1.0 + self.n_beam) * self.U_bc * self.vA
self.u_c = -1.0 * self.n_beam / (1.0 + self.n_beam) * self.U_bc * self.vA
self.n_beam = self.n_beam * self.n_plasma
self.dz = self.DZ * self.l_i
self.Lz = self.Nz * self.dz
self.Lx = self.Nx * self.dz
if self.dim == 3:
self.volume = self.Lx * self.Lx * self.Lz
self.N_cells = self.Nx * self.Nx * self.Nz
elif self.dim == 2:
self.volume = self.Lx * self.Lz
self.N_cells = self.Nx * self.Nz
else:
self.volume = self.Lz
self.N_cells = self.Nz
diag_period = 1 / 4.0 # Output interval (ion cyclotron periods)
self.diag_steps = int(diag_period / self.DT)
# if this is a test case run for only 25 cyclotron periods
if self.test:
self.LT = 25.0
self.total_steps = int(np.ceil(self.LT / self.DT))
self.dt = self.DT / self.w_ci
# dump all the current attributes to a dill pickle file
if comm.rank == 0:
with open("sim_parameters.dpkl", "wb") as f:
dill.dump(self, f)
# print out plasma parameters
if comm.rank == 0:
print(
f"Initializing simulation with input parameters:\n"
f"\tT = {self.T_plasma*1e-3:.1f} keV\n"
f"\tn = {self.n_plasma:.1e} m^-3\n"
f"\tB0 = {self.B0:.2f} T\n"
f"\tM/m = {self.m_ion:.0f}\n"
)
print(
f"Plasma parameters:\n"
f"\tl_i = {self.l_i:.1e} m\n"
f"\tt_ci = {self.t_ci:.1e} s\n"
f"\tv_ti = {self.v_ti:.1e} m/s\n"
f"\tvA = {self.vA:.1e} m/s\n"
)
print(
f"Numerical parameters:\n"
f"\tdz = {self.dz:.1e} m\n"
f"\tdt = {self.dt:.1e} s\n"
f"\tdiag steps = {self.diag_steps:d}\n"
f"\ttotal steps = {self.total_steps:d}\n"
)
self.setup_run()
def get_plasma_quantities(self):
"""Calculate various plasma parameters based on the simulation input."""
# Ion mass (kg)
self.M = self.m_ion * constants.m_e
# Cyclotron angular frequency (rad/s) and period (s)
self.w_ci = constants.q_e * abs(self.B0) / self.M
self.t_ci = 2.0 * np.pi / self.w_ci
# Alfven speed (m/s): vA = B / sqrt(mu0 * n * (M + m)) = c * omega_ci / w_pi
self.vA = self.vA_over_c * constants.c
self.n_plasma = (self.B0 / self.vA) ** 2 / (
constants.mu0 * (self.M + constants.m_e)
)
# Ion plasma frequency (Hz)
self.w_pi = np.sqrt(constants.q_e**2 * self.n_plasma / (self.M * constants.ep0))
# Skin depth (m)
self.l_i = constants.c / self.w_pi
# Ion thermal velocity (m/s) from beta = 2 * (v_ti / vA)**2
self.v_ti = np.sqrt(self.beta / 2.0) * self.vA
# Temperature (eV) from thermal speed: v_ti = sqrt(kT / M)
self.T_plasma = self.v_ti**2 * self.M / constants.q_e # eV
# Larmor radius (m)
self.rho_i = self.v_ti / self.w_ci
def setup_run(self):
"""Setup simulation components."""
#######################################################################
# Set geometry and boundary conditions #
#######################################################################
if self.dim == 1:
grid_object = picmi.Cartesian1DGrid
elif self.dim == 2:
grid_object = picmi.Cartesian2DGrid
else:
grid_object = picmi.Cartesian3DGrid
self.grid = grid_object(
number_of_cells=[self.Nx, self.Nx, self.Nz][-self.dim :],
warpx_max_grid_size=self.Nz,
lower_bound=[-self.Lx / 2.0, -self.Lx / 2.0, 0][-self.dim :],
upper_bound=[self.Lx / 2.0, self.Lx / 2.0, self.Lz][-self.dim :],
lower_boundary_conditions=["periodic"] * self.dim,
upper_boundary_conditions=["periodic"] * self.dim,
)
simulation.time_step_size = self.dt
simulation.max_steps = self.total_steps
simulation.current_deposition_algo = "direct"
simulation.particle_shape = 1
simulation.verbose = self.verbose
#######################################################################
# Field solver and external field #
#######################################################################
self.solver = picmi.HybridPICSolver(
grid=self.grid,
gamma=1.0,
Te=self.T_plasma / 10.0,
n0=self.n_plasma + self.n_beam,
plasma_resistivity=self.eta,
substeps=self.substeps,
)
simulation.solver = self.solver
B_ext = picmi.AnalyticInitialField(
Bx_expression=0.0, By_expression=0.0, Bz_expression=self.B0
)
simulation.add_applied_field(B_ext)
#######################################################################
# Particle types setup #
#######################################################################
self.ions = picmi.Species(
name="ions",
charge="q_e",
mass=self.M,
initial_distribution=picmi.UniformDistribution(
density=self.n_plasma,
rms_velocity=[self.v_ti] * 3,
directed_velocity=[0, 0, self.u_c],
),
)
simulation.add_species(
self.ions,
layout=picmi.PseudoRandomLayout(
grid=self.grid, n_macroparticles_per_cell=self.NPPC[self.dim - 1]
),
)
self.beam_ions = picmi.Species(
name="beam_ions",
charge="q_e",
mass=self.M,
initial_distribution=picmi.UniformDistribution(
density=self.n_beam,
rms_velocity=[self.v_ti] * 3,
directed_velocity=[0, 0, self.u_beam],
),
)
simulation.add_species(
self.beam_ions,
layout=picmi.PseudoRandomLayout(
grid=self.grid, n_macroparticles_per_cell=self.NPPC[self.dim - 1] / 2
),
)
#######################################################################
# Add diagnostics #
#######################################################################
callbacks.installafterstep(self.energy_diagnostic)
callbacks.installafterstep(self.text_diag)
if self.test:
part_diag = picmi.ParticleDiagnostic(
name="diag1",
period=1250,
species=[self.ions, self.beam_ions],
data_list=["ux", "uy", "uz", "z", "weighting"],
)
simulation.add_diagnostic(part_diag)
field_diag = picmi.FieldDiagnostic(
name="diag1",
grid=self.grid,
period=1250,
data_list=["Bx", "By", "Bz", "Ex", "Ey", "Ez", "Jx", "Jy", "Jz"],
)
simulation.add_diagnostic(field_diag)
# output the full particle data at t*w_ci = 40
step = int(40.0 / self.DT)
parts_diag = picmi.ParticleDiagnostic(
name="parts_diag",
period=f"{step}:{step}",
species=[self.ions, self.beam_ions],
write_dir="diags",
warpx_file_prefix="Python_hybrid_PIC_plt",
warpx_format="openpmd",
warpx_openpmd_backend="h5",
)
simulation.add_diagnostic(parts_diag)
self.output_file_name = "field_data.txt"
if self.dim == 1:
line_diag = picmi.ReducedDiagnostic(
diag_type="FieldProbe",
probe_geometry="Line",
z_probe=0,
z1_probe=self.Lz,
resolution=self.Nz - 1,
name=self.output_file_name[:-4],
period=self.diag_steps,
path="diags/",
)
simulation.add_diagnostic(line_diag)
else:
# install a custom "reduced diagnostic" to save the average field
callbacks.installafterEsolve(self._record_average_fields)
try:
os.mkdir("diags")
except OSError:
# diags directory already exists
pass
with open(f"diags/{self.output_file_name}", "w") as f:
f.write("[0]step() [1]time(s) [2]z_coord(m) [3]By_lev0-(T)\n")
#######################################################################
# Initialize simulation #
#######################################################################
simulation.initialize_inputs()
simulation.initialize_warpx()
# create particle container wrapper for the ion species to access
# particle data
self.ion_container_wrapper = particle_containers.ParticleContainerWrapper(
self.ions.name
)
self.beam_ion_container_wrapper = particle_containers.ParticleContainerWrapper(
self.beam_ions.name
)
def _create_data_arrays(self):
self.prev_time = time.time()
self.start_time = self.prev_time
self.prev_step = 0
if libwarpx.amr.ParallelDescriptor.MyProc() == 0:
# allocate arrays for storing energy values
self.energy_vals = np.zeros((self.total_steps // self.diag_steps, 4))
def text_diag(self):
"""Diagnostic function to print out timing data and particle numbers."""
step = simulation.extension.warpx.getistep(lev=0) - 1
if not hasattr(self, "prev_time"):
self._create_data_arrays()
if step % (self.total_steps // 10) != 0:
return
wall_time = time.time() - self.prev_time
steps = step - self.prev_step
step_rate = steps / wall_time
status_dict = {
"step": step,
"nplive beam ions": self.ion_container_wrapper.nps,
"nplive ions": self.beam_ion_container_wrapper.nps,
"wall_time": wall_time,
"step_rate": step_rate,
"diag_steps": self.diag_steps,
"iproc": None,
}
diag_string = (
"Step #{step:6d}; "
"{nplive beam ions} beam ions; "
"{nplive ions} core ions; "
"{wall_time:6.1f} s wall time; "
"{step_rate:4.2f} steps/s"
)
if libwarpx.amr.ParallelDescriptor.MyProc() == 0:
print(diag_string.format(**status_dict))
self.prev_time = time.time()
self.prev_step = step
def energy_diagnostic(self):
"""Diagnostic to get the total, magnetic and kinetic energies in the
simulation."""
step = simulation.extension.warpx.getistep(lev=0) - 1
if step % self.diag_steps != 1:
return
idx = (step - 1) // self.diag_steps
if not hasattr(self, "prev_time"):
self._create_data_arrays()
# get the simulation energies
Ec_par, Ec_perp = self._get_kinetic_energy(self.ion_container_wrapper)
Eb_par, Eb_perp = self._get_kinetic_energy(self.beam_ion_container_wrapper)
if libwarpx.amr.ParallelDescriptor.MyProc() != 0:
return
self.energy_vals[idx, 0] = Ec_par
self.energy_vals[idx, 1] = Ec_perp
self.energy_vals[idx, 2] = Eb_par
self.energy_vals[idx, 3] = Eb_perp
if step == self.total_steps:
np.save("diags/energies.npy", run.energy_vals)
def _get_kinetic_energy(self, container_wrapper):
"""Utility function to retrieve the total kinetic energy in the
simulation."""
try:
ux = np.concatenate(container_wrapper.get_particle_ux())
uy = np.concatenate(container_wrapper.get_particle_uy())
uz = np.concatenate(container_wrapper.get_particle_uz())
w = np.concatenate(container_wrapper.get_particle_weight())
except ValueError:
return 0.0, 0.0
my_E_perp = 0.5 * self.M * np.sum(w * (ux**2 + uy**2))
E_perp = comm.allreduce(my_E_perp, op=mpi.SUM)
my_E_par = 0.5 * self.M * np.sum(w * uz**2)
E_par = comm.allreduce(my_E_par, op=mpi.SUM)
return E_par, E_perp
def _record_average_fields(self):
"""A custom reduced diagnostic to store the average E&M fields in a
similar format as the reduced diagnostic so that the same analysis
script can be used regardless of the simulation dimension.
"""
step = simulation.extension.warpx.getistep(lev=0) - 1
if step % self.diag_steps != 0:
return
By_warpx = fields.BxWrapper()[...]
if libwarpx.amr.ParallelDescriptor.MyProc() != 0:
return
t = step * self.dt
z_vals = np.linspace(0, self.Lz, self.Nz, endpoint=False)
if self.dim == 2:
By = np.mean(By_warpx[:-1], axis=0)
else:
By = np.mean(By_warpx[:-1], axis=(0, 1))
with open(f"diags/{self.output_file_name}", "a") as f:
for ii in range(self.Nz):
f.write(f"{step:05d} {t:.10e} {z_vals[ii]:.10e} {By[ii]:+.10e}\n")
##########################
# parse input parameters
##########################
parser = argparse.ArgumentParser()
parser.add_argument(
"-t",
"--test",
help="toggle whether this script is run as a short CI test",
action="store_true",
)
parser.add_argument(
"-d", "--dim", help="Simulation dimension", required=False, type=int, default=1
)
parser.add_argument(
"-r",
"--resonant",
help="Run the resonant case",
required=False,
action="store_true",
)
parser.add_argument(
"-v",
"--verbose",
help="Verbose output",
action="store_true",
)
args, left = parser.parse_known_args()
sys.argv = sys.argv[:1] + left
run = HybridPICBeamInstability(
test=args.test, dim=args.dim, resonant=args.resonant, verbose=args.verbose
)
simulation.step()
For MPI-parallel runs, prefix these lines with mpiexec -n 4 ...
or srun -n 4 ...
, depending on the system.
Execute:
python3 inputs_test_1d_ohm_solver_ion_beam_picmi.py -dim {1/2/3} --resonant
Execute:
python3 inputs_test_1d_ohm_solver_ion_beam_picmi.py -dim {1/2/3}
Analyze
The following script reads the simulation output from the above example, performs Fourier transforms of the field data and outputs the figures shown below.
Script analysis.py
#!/usr/bin/env python3
#
# --- Analysis script for the hybrid-PIC example of ion beam R instability.
import dill
import h5py
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from pywarpx import picmi
constants = picmi.constants
matplotlib.rcParams.update({"font.size": 20})
# load simulation parameters
with open("sim_parameters.dpkl", "rb") as f:
sim = dill.load(f)
if sim.resonant:
resonant_str = "resonant"
else:
resonant_str = "non resonant"
data = np.loadtxt("diags/field_data.txt", skiprows=1)
if sim.dim == 1:
field_idx_dict = {"z": 4, "By": 8}
else:
field_idx_dict = {"z": 2, "By": 3}
step = data[:, 0]
num_steps = len(np.unique(step))
# get the spatial resolution
resolution = len(np.where(step == 0)[0]) - 1
# reshape to separate spatial and time coordinates
sim_data = data.reshape((num_steps, resolution + 1, data.shape[1]))
z_grid = sim_data[1, :, field_idx_dict["z"]]
idx = np.argsort(z_grid)[1:]
dz = np.mean(np.diff(z_grid[idx]))
dt = np.mean(np.diff(sim_data[:, 0, 1]))
data = np.zeros((num_steps, resolution))
for i in range(num_steps):
data[i, :] = sim_data[i, idx, field_idx_dict["By"]]
print(f"Data file contains {num_steps} time snapshots.")
print(f"Spatial resolution is {resolution}")
# Create the stack time plot
fig, ax1 = plt.subplots(1, 1, figsize=(10, 5))
max_val = np.max(np.abs(data[:, :] / sim.B0))
extent = [0, sim.Lz / sim.l_i, 0, num_steps * dt * sim.w_ci] # num_steps*dt/sim.t_ci]
im = ax1.imshow(
data[:, :] / sim.B0,
extent=extent,
origin="lower",
cmap="seismic",
vmin=-max_val,
vmax=max_val,
aspect="equal",
)
# Colorbar
fig.subplots_adjust(right=0.825)
cbar_ax = fig.add_axes([0.85, 0.2, 0.03, 0.6])
fig.colorbar(im, cax=cbar_ax, orientation="vertical", label="$B_y/B_0$")
ax1.set_xlabel("$x/l_i$")
ax1.set_ylabel("$t \Omega_i$ (rad)")
ax1.set_title(f"Ion beam R instability - {resonant_str} case")
plt.savefig(
f"diags/ion_beam_R_instability_{resonant_str}_eta_{sim.eta}_substeps_{sim.substeps}.png"
)
plt.close()
if sim.resonant:
# Plot the 4th, 5th and 6th Fourier modes
field_kt = np.fft.fft(data[:, :], axis=1)
k = 2 * np.pi * np.fft.fftfreq(resolution, dz) * sim.l_i
t_grid = np.arange(num_steps) * dt * sim.w_ci
plt.plot(
t_grid, np.abs(field_kt[:, 4] / sim.B0), "r", label=f"m = 4, $kl_i={k[4]:.2f}$"
)
plt.plot(
t_grid, np.abs(field_kt[:, 5] / sim.B0), "b", label=f"m = 5, $kl_i={k[5]:.2f}$"
)
plt.plot(
t_grid, np.abs(field_kt[:, 6] / sim.B0), "k", label=f"m = 6, $kl_i={k[6]:.2f}$"
)
# The theoretical growth rates for the 4th, 5th and 6th Fourier modes of
# the By-field was obtained from Fig. 12a of Munoz et al.
# Note the rates here are gamma / w_ci
gamma4 = 0.1915611861780133
gamma5 = 0.20087036355662818
gamma6 = 0.17123024228396777
# Draw the line of best fit with the theoretical growth rate (slope) in the
# window t*w_ci between 10 and 40
idx = np.where((t_grid > 10) & (t_grid < 40))
t_points = t_grid[idx]
A4 = np.exp(np.mean(np.log(np.abs(field_kt[idx, 4] / sim.B0)) - t_points * gamma4))
plt.plot(t_points, A4 * np.exp(t_points * gamma4), "r--", lw=3)
A5 = np.exp(np.mean(np.log(np.abs(field_kt[idx, 5] / sim.B0)) - t_points * gamma5))
plt.plot(t_points, A5 * np.exp(t_points * gamma5), "b--", lw=3)
A6 = np.exp(np.mean(np.log(np.abs(field_kt[idx, 6] / sim.B0)) - t_points * gamma6))
plt.plot(t_points, A6 * np.exp(t_points * gamma6), "k--", lw=3)
plt.grid()
plt.legend()
plt.yscale("log")
plt.ylabel("$|B_y/B_0|$")
plt.xlabel("$t\Omega_i$ (rad)")
plt.tight_layout()
plt.savefig(
f"diags/ion_beam_R_instability_{resonant_str}_eta_{sim.eta}_substeps_{sim.substeps}_low_modes.png"
)
plt.close()
# check if the growth rate matches expectation
m4_rms_error = np.sqrt(
np.mean(
(np.abs(field_kt[idx, 4] / sim.B0) - A4 * np.exp(t_points * gamma4)) ** 2
)
)
m5_rms_error = np.sqrt(
np.mean(
(np.abs(field_kt[idx, 5] / sim.B0) - A5 * np.exp(t_points * gamma5)) ** 2
)
)
m6_rms_error = np.sqrt(
np.mean(
(np.abs(field_kt[idx, 6] / sim.B0) - A6 * np.exp(t_points * gamma6)) ** 2
)
)
print("Growth rate RMS errors:")
print(f" m = 4: {m4_rms_error:.3e}")
print(f" m = 5: {m5_rms_error:.3e}")
print(f" m = 6: {m6_rms_error:.3e}")
if not sim.test:
with h5py.File("diags/Python_hybrid_PIC_plt/openpmd_004000.h5", "r") as data:
timestep = str(np.squeeze([key for key in data["data"].keys()]))
z = np.array(data["data"][timestep]["particles"]["ions"]["position"]["z"])
vy = np.array(data["data"][timestep]["particles"]["ions"]["momentum"]["y"])
w = np.array(data["data"][timestep]["particles"]["ions"]["weighting"])
fig, ax1 = plt.subplots(1, 1, figsize=(10, 5))
im = ax1.hist2d(
z / sim.l_i,
vy / sim.M / sim.vA,
weights=w,
density=True,
range=[[0, 250], [-10, 10]],
bins=250,
cmin=1e-5,
)
# Colorbar
fig.subplots_adjust(bottom=0.15, right=0.815)
cbar_ax = fig.add_axes([0.83, 0.2, 0.03, 0.6])
fig.colorbar(
im[3], cax=cbar_ax, orientation="vertical", format="%.0e", label="$f(z, v_y)$"
)
ax1.set_xlabel("$x/l_i$")
ax1.set_ylabel("$v_{y}/v_A$")
ax1.set_title(f"Ion beam R instability - {resonant_str} case")
plt.savefig(
f"diags/ion_beam_R_instability_{resonant_str}_eta_{sim.eta}_substeps_{sim.substeps}_core_phase_space.png"
)
plt.close()
with h5py.File("diags/Python_hybrid_PIC_plt/openpmd_004000.h5", "r") as data:
timestep = str(np.squeeze([key for key in data["data"].keys()]))
z = np.array(data["data"][timestep]["particles"]["beam_ions"]["position"]["z"])
vy = np.array(data["data"][timestep]["particles"]["beam_ions"]["momentum"]["y"])
w = np.array(data["data"][timestep]["particles"]["beam_ions"]["weighting"])
fig, ax1 = plt.subplots(1, 1, figsize=(10, 5))
im = ax1.hist2d(
z / sim.l_i,
vy / sim.M / sim.vA,
weights=w,
density=True,
range=[[0, 250], [-10, 10]],
bins=250,
cmin=1e-5,
)
# Colorbar
fig.subplots_adjust(bottom=0.15, right=0.815)
cbar_ax = fig.add_axes([0.83, 0.2, 0.03, 0.6])
fig.colorbar(
im[3], cax=cbar_ax, orientation="vertical", format="%.0e", label="$f(z, v_y)$"
)
ax1.set_xlabel("$x/l_i$")
ax1.set_ylabel("$v_{y}/v_A$")
ax1.set_title(f"Ion beam R instability - {resonant_str} case")
plt.savefig(
f"diags/ion_beam_R_instability_{resonant_str}_eta_{sim.eta}_substeps_{sim.substeps}_beam_phase_space.png"
)
plt.show()
if sim.test:
# physics based check - these error tolerances are not set from theory
# but from the errors that were present when the test was created. If these
# assert's fail, the full benchmark should be rerun (same as the test but
# without the `--test` argument) and the growth rates (up to saturation)
# compared to the theoretical ones to determine if the physics test passes.
# At creation, the full test (3d) had the following errors (ran on 1 V100):
# m4_rms_error = 3.329; m5_rms_error = 1.052; m6_rms_error = 2.583
assert np.isclose(m4_rms_error, 1.515, atol=0.01)
assert np.isclose(m5_rms_error, 0.718, atol=0.01)
assert np.isclose(m6_rms_error, 0.357, atol=0.01)
# checksum check
import os
import sys
sys.path.insert(1, "../../../../warpx/Regression/Checksum/")
from checksumAPI import evaluate_checksum
# compare checksums
evaluate_checksum(
test_name=os.path.split(os.getcwd())[1],
output_file=sys.argv[1],
)
The figures below show the evolution of the y-component of the magnetic field as the beam and core plasma interact.
The growth rates of the strongest growing modes for the resonant case are compared to theory (dashed lines) in the figure below.