Science Highlights

WarpX can be used in many domains of laser-plasma science, plasma physics, accelerator physics and beyond. Below, we collect a series of scientific publications that used WarpX. Please acknowledge WarpX in your works, so we can find your works.

Is your publication missing? Contact us or edit this page via a pull request.

Plasma-Based Acceleration

Scientific works in laser-plasma and beam-plasma acceleration.

  1. Ma M, Zeng M, Wang J, Lu G, Yan W, Chen L, and Li D. Particle-in-cell simulation of laser wakefield accelerators with oblique lasers in quasicylindrical geometry. Phys. Rev. Accel. Beams 28, 021301, 2025 DOI:10.1103/PhysRevAccelBeams.28.021301

  2. Shrock JE, Rockafellow E, Miao B, Le M, Hollinger RC, Wang S, Gonsalves AJ, Picksley A, Rocca JJ, and Milchberg HM. Guided Mode Evolution and Ionization Injection in Meter-Scale Multi-GeV Laser Wakefield Accelerators. Phys. Rev. Lett. 133, 045002, 2024 DOI:10.1103/PhysRevLett.133.045002

  3. Ross AJ, Chappell J, van de Wetering JJ, Cowley J, Archer E, Bourgeois N, Corner L, Emerson DR, Feder L, Gu XJ, Jakobsson O, Jones H, Picksley A, Reid L, Wang W, Walczak R, Hooker SM. Resonant excitation of plasma waves in a plasma channel. Phys. Rev. Research 6, L022001, 2024 DOI:10.1103/PhysRevResearch.6.L022001

  4. Sandberg R T, Lehe R, Mitchell C E, Garten M, Myers A, Qiang J, Vay J-L and Huebl A. Synthesizing Particle-in-Cell Simulations Through Learning and GPU Computing for Hybrid Particle Accelerator Beamlines. Proc. of Platform for Advanced Scientific Computing (PASC’24), PASC24 Best Paper Award, 2024. DOI:10.1145/3659914.3659937

  5. Peng H, Huang TW, Jiang K, Li R, Wu CN, Yu MY, Riconda C, Weber S, Zhou CT, Ruan SC. Coherent Subcycle Optical Shock from a Superluminal Plasma Wake. Phys. Rev. Lett. 131, 145003, 2023 DOI:10.1103/PhysRevLett.131.145003

  6. Mewes SM, Boyle GJ, Ferran Pousa A, Shalloo RJ, Osterhoff J, Arran C, Corner L, Walczak R, Hooker SM, Thévenet M. Demonstration of tunability of HOFI waveguides via start-to-end simulations. Phys. Rev. Research 5, 033112, 2023 DOI:10.1103/PhysRevResearch.5.033112

  7. Sandberg R T, Lehe R, Mitchell C E, Garten M, Qiang J, Vay J-L and Huebl A. Hybrid Beamline Element ML-Training for Surrogates in the ImpactX Beam-Dynamics Code. 14th International Particle Accelerator Conference (IPAC’23), WEPA101, 2023. DOI:10.18429/JACoW-IPAC2023-WEPA101

  8. Wang J, Zeng M, Li D, Wang X, Gao J. High quality beam produced by tightly focused laser driven wakefield accelerators. Phys. Rev. Accel. Beams, 26, 091303, 2023. DOI:10.1103/PhysRevAccelBeams.26.091303

  9. Fedeli L, Huebl A, Boillod-Cerneux F, Clark T, Gott K, Hillairet C, Jaure S, Leblanc A, Lehe R, Myers A, Piechurski C, Sato M, Zaim N, Zhang W, Vay J-L, Vincenti H. Pushing the Frontier in the Design of Laser-Based Electron Accelerators with Groundbreaking Mesh-Refined Particle-In-Cell Simulations on Exascale-Class Supercomputers. SC22: International Conference for High Performance Computing, Networking, Storage and Analysis (SC). ISSN:2167-4337, pp. 25-36, Dallas, TX, US, 2022. DOI:10.1109/SC41404.2022.00008 (preprint here)

  10. Zhao Y, Lehe R, Myers A, Thevenet M, Huebl A, Schroeder CB, Vay J-L. Plasma electron contribution to beam emittance growth from Coulomb collisions in plasma-based accelerators. Physics of Plasmas 29, 103109, 2022. DOI:10.1063/5.0102919

  11. Wang J, Zeng M, Li D, Wang X, Lu W, Gao J. Injection induced by coaxial laser interference in laser wakefield accelerators. Matter and Radiation at Extremes 7, 054001, 2022. DOI:10.1063/5.0101098

  12. Miao B, Shrock JE, Feder L, Hollinger RC, Morrison J, Nedbailo R, Picksley A, Song H, Wang S, Rocca JJ, Milchberg HM. Multi-GeV electron bunches from an all-optical laser wakefield accelerator. Physical Review X 12, 031038, 2022. DOI:10.1103/PhysRevX.12.031038

  13. Mirani F, Calzolari D, Formenti A, Passoni M. Superintense laser-driven photon activation analysis. Nature Communications Physics volume 4.185, 2021. DOI:10.1038/s42005-021-00685-2

  14. Zhao Y, Lehe R, Myers A, Thevenet M, Huebl A, Schroeder CB, Vay J-L. Modeling of emittance growth due to Coulomb collisions in plasma-based accelerators. Physics of Plasmas 27, 113105, 2020. DOI:10.1063/5.0023776

Laser-Plasma Interaction

Scientific works in laser-ion acceleration and laser-matter interaction.

  1. Garten M, Bulanov S S, Hakimi S, Obst-Huebl L, Mitchell C E, Schroeder C B, Esarey E, Geddes C G R, Vay J-L, Huebl A. Laser-plasma ion beam booster based on hollow-channel magnetic vortex acceleration. Physical Review Research 6, 033148, 2024. DOI:10.1103/PhysRevResearch.6.033148

  2. Zaïm N, Sainte-Marie A, Fedeli L, Bartoli P, Huebl A, Leblanc A, Vay J-L, Vincenti H. Light-matter interaction near the Schwinger limit using tightly focused doppler-boosted lasers. Physical Review Letters 132, 175002, 2024. DOI:10.1103/PhysRevLett.132.175002

  3. Knight B, Gautam C, Stoner C, Egner B, Smith J, Orban C, Manfredi J, Frische K, Dexter M, Chowdhury E, Patnaik A (2023). Detailed Characterization of a kHz-rate Laser-Driven Fusion at a Thin Liquid Sheet with a Neutron Detection Suite. High Power Laser Science and Engineering, 1-13, 2023. DOI:10.1017/hpl.2023.84

  4. Fedeli L, Huebl A, Boillod-Cerneux F, Clark T, Gott K, Hillairet C, Jaure S, Leblanc A, Lehe R, Myers A, Piechurski C, Sato M, Zaim N, Zhang W, Vay J-L, Vincenti H. Pushing the Frontier in the Design of Laser-Based Electron Accelerators with Groundbreaking Mesh-Refined Particle-In-Cell Simulations on Exascale-Class Supercomputers. SC22: International Conference for High Performance Computing, Networking, Storage and Analysis (SC). ISSN:2167-4337, pp. 25-36, Dallas, TX, US, 2022. DOI:10.1109/SC41404.2022.00008 (preprint here)

  5. Hakimi S, Obst-Huebl L, Huebl A, Nakamura K, Bulanov SS, Steinke S, Leemans WP, Kober Z, Ostermayr TM, Schenkel T, Gonsalves AJ, Vay J-L, Tilborg Jv, Toth C, Schroeder CB, Esarey E, Geddes CGR. Laser-solid interaction studies enabled by the new capabilities of the iP2 BELLA PW beamline. Physics of Plasmas 29, 083102, 2022. DOI:10.1063/5.0089331

  6. Levy D, Andriyash IA, Haessler S, Kaur J, Ouille M, Flacco A, Kroupp E, Malka V, Lopez-Martens R. Low-divergence MeV-class proton beams from kHz-driven laser-solid interactions. Phys. Rev. Accel. Beams 25, 093402, 2022. DOI:10.1103/PhysRevAccelBeams.25.093402

  7. Fedeli L, Sainte-Marie A, Zaïm N, Thévenet M, Vay J-L, Myers A, Quéré F, Vincenti H. Probing strong-field QED with Doppler-boosted PetaWatt-class lasers. Physical Review Letters 127, 114801, 2021. DOI:10.1103/PhysRevLett.127.114801

Particle Accelerator & Beam Physics

Scientific works in particle and beam modeling.

  1. Sandberg R T, Lehe R, Mitchell C E, Garten M, Myers A, Qiang J, Vay J-L and Huebl A. Synthesizing Particle-in-Cell Simulations Through Learning and GPU Computing for Hybrid Particle Accelerator Beamlines. Proc. of Platform for Advanced Scientific Computing (PASC’24), PASC24 Best Paper Award, 2024. DOI:10.1145/3659914.3659937

  2. Nguyen B, Formenti A, Lehe R, Vay J-L, Gessner S, and Fedeli L. Comparison of WarpX and GUINEA-PIG for electron positron collisions. 15th International Particle Accelerator Conference (IPAC’24), WEPC84, 2024. preprint, DOI:10.18429/JACoW-IPAC2024-WEPC84

  3. Sandberg R T, Lehe R, Mitchell C E, Garten M, Qiang J, Vay J-L, Huebl A. Hybrid Beamline Element ML-Training for Surrogates in the ImpactX Beam-Dynamics Code. 14th International Particle Accelerator Conference (IPAC’23), WEPA101, 2023. preprint, DOI:10.18429/JACoW-IPAC2023-WEPA101

  4. Tan W H, Piot P, Myers A, Zhang W, Rheaume T, Jambunathan R, Huebl A, Lehe R, Vay J-L. Simulation studies of drive-beam instability in a dielectric wakefield accelerator. 13th International Particle Accelerator Conference (IPAC’22), MOPOMS012, 2022. DOI:10.18429/JACoW-IPAC2022-MOPOMS012

Astrophysical Plasma Physics

Scientific works in astrophysical plasma modeling.

  1. Wu Y, Shi C, Tao X, Zhao J Kinetic-hybrid Simulations of Counterpropagating Ion Cyclotron Waves and Proton Scattering in the Near-Sun Solar Wind. The Astrophysical Journal 983 107, 2025. 10.3847/1538-4357/adbc6a

  2. Sam A, Kumar P, Fletcher AC, Crabtree C, Lee N, Elschot S. Nonlinear evolution, propagation, electron-trapping, and damping effects of ion-acoustic solitons using fully kinetic PIC simulations. Phys. Plasmas 32 022103, 2025 DOI:10.1063/5.0249525

  3. Jambunathan R, Jones H, Corrales L, Klion H, Roward ME, Myers A, Zhang W, Vay J-L. Application of mesh refinement to relativistic magnetic reconnection. Physics of Plasmas *32* 1, 2025 DOI:10.1063/5.0233583

  4. Ghosh S, Bhat P. Magnetic Reconnection: An Alternative Explanation of Radio Emission in Galaxy Clusters. The Astrophysical Journal Letters 979 1, 2025. DOI:10.3847/2041-8213/ad9f2d

  5. Klion H, Jambunathan R, Rowan ME, Yang E, Willcox D, Vay J-L, Lehe R, Myers A, Huebl A, Zhang W. Particle-in-Cell simulations of relativistic magnetic reconnection with advanced Maxwell solver algorithms. The Astrophysical Journal 952 8, 2023. DOI:10.3847/1538-4357/acd75b

Microelectronics

ARTEMIS (Adaptive mesh Refinement Time-domain ElectrodynaMIcs Solver) is based on WarpX and couples the Maxwell’s equations implementation in WarpX with classical equations that describe quantum material behavior (such as, LLG equation for micromagnetics and London equation for superconducting materials) for quantifying the performance of next-generation microelectronics.

  1. Sawant S S, Yao Z, Jambunathan R, Nonaka A. Characterization of Transmission Lines in Microelectronic Circuits Using the ARTEMIS Solver. IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 8, pp. 31-39, 2023. DOI:10.1109/JMMCT.2022.3228281

  2. Kumar P, Nonaka A, Jambunathan R, Pahwa G and Salahuddin S, Yao Z. FerroX: A GPU-accelerated, 3D Phase-Field Simulation Framework for Modeling Ferroelectric Devices. arXiv preprint, 2022. arXiv:2210.15668

  3. Yao Z, Jambunathan R, Zeng Y, Nonaka A. A Massively Parallel Time-Domain Coupled Electrodynamics–Micromagnetics Solver. The International Journal of High Performance Computing Applications, 36(2):167-181, 2022. DOI:10.1177/10943420211057906

High-Performance Computing and Numerics

Scientific works in High-Performance Computing, applied mathematics and numerics.

Please see this section.

Related works using WarpX:

  1. Yan Y., Du F., Tang J., Yu D and Zhao Y., Numerical study on wave attenuation via 1D fully kinetic electromagnetic particle-in-cell simulations. Plasma Sources Sci. Technol. 33 115013, 2024 DOI:10.1088/1361-6595/ad8c7c

Nuclear Fusion and Plasma Confinement

  1. Tyushev M., Smolyakov A., Sabo A., Groenewald R., Necas A., and Yushmanov P. Drift-kinetic PIC simulations of plasma flow and energy transport in the magnetic mirror configuration. Physics of Plasmas 32, 032514, 2025. DOI:10.1063/5.0227040

  2. Tyushev M., Papahn Zadeh M., Chopra N. S., Raitses Y., Romadanov I., Likhanskii A., Fubiani G., Garrigues L., Groenewald R. and Smolyakov A. Mode transitions and spoke structures in E×B Penning discharge. Physics of Plasmas 32, 013511, 2025. DOI:10.1063/5.0238577

  3. Scheffel J. and Jäderberg J. and Bendtz K. and Holmberg R. and Lindvall K., Axial Confinement in the Novatron Mirror Machine. arXiv 2410.20134 DOI:10.48550/arXiv.2410.20134

  4. Affolter M., Thompson R., Hepner S., Hayes E. C., Podolsky V., Borghei M., Carlsson J., Gargone A., Merthe D., McKee E., Langtry R., The Orbitron: A crossed-field device for co-confinement of high energy ions and electrons. AIP Advances 14, 085025, 2024. DOI:10.1063/5.0201470

  5. Nicks B. S., Putvinski S. and Tajima T. Stabilization of the Alfvén-ion cyclotron instability through short plasmas: Fully kinetic simulations in a high-beta regime. Physics of Plasmas 30, 102108, 2023. DOI:10.1063/5.0163889

  6. Groenewald R. E., Veksler A., Ceccherini F., Necas A., Nicks B. S., Barnes D. C., Tajima T. and Dettrick S. A. Accelerated kinetic model for global macro stability studies of high-beta fusion reactors. Physics of Plasmas 30, 122508, 2023. DOI:10.1063/5.0178288

Plasma Thrusters and Electric Propulsion

  1. Xie L., Luo X., Zhou Z. and Zhao Y., Effect of plasma initialization on 3D PIC simulation of Hall thruster azimuthal instability. Physica Scripta, 99, 095602, 2024. DOI:10.1088/1402-4896/ad69e5

  2. Marks T. A. and Gorodetsky A. A., Hall thruster simulations in WarpX. 38th International Electric Propulsion Conference, Toulouse, France, 2024. DOI:10.7302/234915