Dependencies
WarpX depends on the following popular third party software. Please see installation instructions below.
a mature C++17 compiler, e.g., GCC 8.4+, Clang 7, NVCC 11.0, MSVC 19.15 or newer
AMReX: we automatically download and compile a copy of AMReX
PICSAR: we automatically download and compile a copy of PICSAR
and for Python bindings:
pyAMReX: we automatically download and compile a copy of pyAMReX
pybind11: we automatically download and compile a copy of pybind11
Optional dependencies include:
MPI 3.0+: for multi-node and/or multi-GPU execution
for on-node accelerated compute one of either:
OpenMP 3.1+: for threaded CPU execution or
CUDA Toolkit 11.7+: for Nvidia GPU support (see matching host-compilers) or
ROCm 5.2+ (5.5+ recommended): for AMD GPU support
FFTW3: for spectral solver (PSATD or IGF) support when running on CPU or SYCL
also needs the
pkg-config
tool on Unix
BLAS++ and LAPACK++: for spectral solver (PSATD) support in RZ geometry
Boost 1.66.0+: for QED lookup tables generation support
openPMD-api 0.15.1+: we automatically download and compile a copy of openPMD-api for openPMD I/O support
see optional I/O backends, i.e., ADIOS2 and/or HDF5
Ascent 0.8.0+: for in situ 3D visualization
SENSEI 4.0.0+: for in situ analysis and visualization
CCache: to speed up rebuilds (For CUDA support, needs version 3.7.9+ and 4.2+ is recommended)
Ninja: for faster parallel compiles
-
see our
requirements.txt
file for compatible versions
If you are on a high-performance computing (HPC) system, then please see our separate HPC documentation.
For all other systems, we recommend to use a package dependency manager: Pick one of the installation methods below to install all dependencies for WarpX development in a consistent manner.
Conda (Linux/macOS/Windows)
Conda/Mamba are cross-compatible, user-level package managers.
Tip
We recommend to configure your conda to use the faster libmamba
dependency solver.
conda update -y -n base conda
conda install -y -n base conda-libmamba-solver
conda config --set solver libmamba
We recommend to deactivate that conda self-activates its base
environment.
This avoids interference with the system and other package managers.
conda config --set auto_activate_base false
conda create -n warpx-cpu-mpich-dev -c conda-forge blaspp boost ccache cmake compilers git lapackpp "openpmd-api=*=mpi_mpich*" openpmd-viewer python make numpy pandas scipy yt "fftw=*=mpi_mpich*" pkg-config matplotlib mamba mpich mpi4py ninja pip virtualenv
conda activate warpx-cpu-mpich-dev
# compile WarpX with -DWarpX_MPI=ON
# for pip, use: export WARPX_MPI=ON
conda create -n warpx-cpu-dev -c conda-forge blaspp boost ccache cmake compilers git lapackpp openpmd-api openpmd-viewer python make numpy pandas scipy yt fftw pkg-config matplotlib mamba ninja pip virtualenv
conda activate warpx-cpu-dev
# compile WarpX with -DWarpX_MPI=OFF
# for pip, use: export WARPX_MPI=OFF
For OpenMP support, you will further need:
conda install -c conda-forge libgomp
conda install -c conda-forge llvm-openmp
For Nvidia CUDA GPU support, you will need to have a recent CUDA driver installed or you can lower the CUDA version of the Nvidia cuda package and conda-forge to match your drivers and then add these packages:
conda install -c nvidia -c conda-forge cuda cuda-nvtx-dev cupy
More info for CUDA-enabled ML packages.
Spack (Linux/macOS)
Spack is a user-level package manager. It is primarily written for Linux, with slightly less support for macOS, and future support for Windows.
First, download a WarpX Spack desktop development environment of your choice. For most desktop developments, pick the OpenMP environment for CPUs unless you have a supported GPU.
Debian/Ubuntu Linux:
OpenMP:
system=ubuntu; compute=openmp
(CPUs)CUDA:
system=ubuntu; compute=cuda
(Nvidia GPUs)ROCm:
system=ubuntu; compute=rocm
(AMD GPUs)SYCL: todo (Intel GPUs)
macOS: first, prepare with
brew install gpg2; brew install gcc
OpenMP:
system=macos; compute=openmp
If you already installed Spack, we recommend to activate its binary caches for faster builds:
spack mirror add rolling https://binaries.spack.io/develop
spack buildcache keys --install --trust
Now install the WarpX dependencies in a new WarpX development environment:
# download environment file
curl -sLO https://raw.githubusercontent.com/ECP-WarpX/WarpX/development/Tools/machines/desktop/spack-${system}-${compute}.yaml
# create new development environment
spack env create warpx-${compute}-dev spack-${system}-${compute}.yaml
spack env activate warpx-${compute}-dev
# installation
spack install
python3 -m pip install jupyter matplotlib numpy openpmd-api openpmd-viewer pandas scipy virtualenv yt
In new terminal sessions, re-activate the environment with
spack env activate warpx-openmp-dev
again.
Replace openmp
with the equivalent you chose.
Compile WarpX with -DWarpX_MPI=ON
.
For pip
, use export WARPX_MPI=ON
.
Brew (macOS/Linux)
Homebrew (Brew) is a user-level package manager primarily for Apple macOS, but also supports Linux.
brew update
brew tap openpmd/openpmd
brew install adios2 # for openPMD
brew install ccache
brew install cmake
brew install fftw # for PSATD
brew install git
brew install hdf5-mpi # for openPMD
brew install libomp
brew unlink gcc
brew link --force libomp
brew install pkg-config # for fftw
brew install open-mpi
brew install openblas # for PSATD in RZ
brew install openpmd-api # for openPMD
If you also want to compile with PSATD in RZ, you need to manually install BLAS++ and LAPACK++:
sudo mkdir -p /usr/local/bin/
sudo curl -L -o /usr/local/bin/cmake-easyinstall https://raw.githubusercontent.com/ax3l/cmake-easyinstall/main/cmake-easyinstall
sudo chmod a+x /usr/local/bin/cmake-easyinstall
cmake-easyinstall --prefix=/usr/local git+https://github.com/icl-utk-edu/blaspp.git \
-Duse_openmp=OFF -Dbuild_tests=OFF -DCMAKE_VERBOSE_MAKEFILE=ON
cmake-easyinstall --prefix=/usr/local git+https://github.com/icl-utk-edu/lapackpp.git \
-Duse_cmake_find_lapack=ON -Dbuild_tests=OFF -DCMAKE_VERBOSE_MAKEFILE=ON
Compile WarpX with -DWarpX_MPI=ON
.
For pip
, use export WARPX_MPI=ON
.
APT (Debian/Ubuntu Linux)
The Advanced Package Tool (APT) is a system-level package manager on Debian-based Linux distributions, including Ubuntu.
sudo apt update
sudo apt install build-essential ccache cmake g++ git libfftw3-mpi-dev libfftw3-dev libhdf5-openmpi-dev libopenmpi-dev pkg-config python3 python3-dev python3-matplotlib python3-mpi4py python3-numpy python3-pandas python3-pip python3-scipy python3-venv
# optional:
# for CUDA, either install
# https://developer.nvidia.com/cuda-downloads (preferred)
# or, if your Debian/Ubuntu is new enough, use the packages
# sudo apt install nvidia-cuda-dev libcub-dev
# compile WarpX with -DWarpX_MPI=ON
# for pip, use: export WARPX_MPI=ON
sudo apt update
sudo apt install build-essential ccache cmake g++ git libfftw3-dev libfftw3-dev libhdf5-dev pkg-config python3 python3-dev python3-matplotlib python3-numpy python3-pandas python3-pip python3-scipy python3-venv
# optional:
# for CUDA, either install
# https://developer.nvidia.com/cuda-downloads (preferred)
# or, if your Debian/Ubuntu is new enough, use the packages
# sudo apt install nvidia-cuda-dev libcub-dev
# compile WarpX with -DWarpX_MPI=OFF
# for pip, use: export WARPX_MPI=OFF