Dependencies

WarpX depends on the following popular third party software. Please see installation instructions below.

  • a mature C++17 compiler, e.g., GCC 8.4+, Clang 7, NVCC 11.0, MSVC 19.15 or newer

  • CMake 3.24.0+

  • Git 2.18+

  • AMReX: we automatically download and compile a copy of AMReX

  • PICSAR: we automatically download and compile a copy of PICSAR

and for Python bindings:

  • pyAMReX: we automatically download and compile a copy of pyAMReX

  • pybind11: we automatically download and compile a copy of pybind11

Optional dependencies include:

If you are on a high-performance computing (HPC) system, then please see our separate HPC documentation.

For all other systems, we recommend to use a package dependency manager: Pick one of the installation methods below to install all dependencies for WarpX development in a consistent manner.

Conda (Linux/macOS/Windows)

Conda/Mamba are cross-compatible, user-level package managers.

Tip

We recommend to configure your conda to use the faster libmamba dependency solver.

conda update -y -n base conda
conda install -y -n base conda-libmamba-solver
conda config --set solver libmamba

We recommend to deactivate that conda self-activates its base environment. This avoids interference with the system and other package managers.

conda config --set auto_activate_base false
conda create -n warpx-cpu-mpich-dev -c conda-forge blaspp boost ccache cmake compilers git lapackpp "openpmd-api=*=mpi_mpich*" openpmd-viewer python make numpy pandas scipy yt "fftw=*=mpi_mpich*" pkg-config matplotlib mamba mpich mpi4py ninja pip virtualenv
conda activate warpx-cpu-mpich-dev

# compile WarpX with -DWarpX_MPI=ON
# for pip, use: export WARPX_MPI=ON
conda create -n warpx-cpu-dev -c conda-forge blaspp boost ccache cmake compilers git lapackpp openpmd-api openpmd-viewer python make numpy pandas scipy yt fftw pkg-config matplotlib mamba ninja pip virtualenv
conda activate warpx-cpu-dev

# compile WarpX with -DWarpX_MPI=OFF
# for pip, use: export WARPX_MPI=OFF

For OpenMP support, you will further need:

conda install -c conda-forge libgomp
conda install -c conda-forge llvm-openmp

For Nvidia CUDA GPU support, you will need to have a recent CUDA driver installed or you can lower the CUDA version of the Nvidia cuda package and conda-forge to match your drivers and then add these packages:

conda install -c nvidia -c conda-forge cuda cuda-nvtx-dev cupy

More info for CUDA-enabled ML packages.

Spack (Linux/macOS)

Spack is a user-level package manager. It is primarily written for Linux, with slightly less support for macOS, and future support for Windows.

First, download a WarpX Spack desktop development environment of your choice. For most desktop developments, pick the OpenMP environment for CPUs unless you have a supported GPU.

  • Debian/Ubuntu Linux:

    • OpenMP: system=ubuntu; compute=openmp (CPUs)

    • CUDA: system=ubuntu; compute=cuda (Nvidia GPUs)

    • ROCm: system=ubuntu; compute=rocm (AMD GPUs)

    • SYCL: todo (Intel GPUs)

  • macOS: first, prepare with brew install gpg2; brew install gcc

    • OpenMP: system=macos; compute=openmp

If you already installed Spack, we recommend to activate its binary caches for faster builds:

spack mirror add rolling https://binaries.spack.io/develop
spack buildcache keys --install --trust

Now install the WarpX dependencies in a new WarpX development environment:

# download environment file
curl -sLO https://raw.githubusercontent.com/ECP-WarpX/WarpX/development/Tools/machines/desktop/spack-${system}-${compute}.yaml

# create new development environment
spack env create warpx-${compute}-dev spack-${system}-${compute}.yaml
spack env activate warpx-${compute}-dev

# installation
spack install
python3 -m pip install jupyter matplotlib numpy openpmd-api openpmd-viewer pandas scipy virtualenv yt

In new terminal sessions, re-activate the environment with

spack env activate warpx-openmp-dev

again. Replace openmp with the equivalent you chose.

Compile WarpX with -DWarpX_MPI=ON. For pip, use export WARPX_MPI=ON.

Brew (macOS/Linux)

Homebrew (Brew) is a user-level package manager primarily for Apple macOS, but also supports Linux.

brew update
brew tap openpmd/openpmd
brew install adios2      # for openPMD
brew install ccache
brew install cmake
brew install fftw        # for PSATD
brew install git
brew install hdf5-mpi    # for openPMD
brew install libomp
brew unlink gcc
brew link --force libomp
brew install pkg-config  # for fftw
brew install open-mpi
brew install openblas    # for PSATD in RZ
brew install openpmd-api # for openPMD

If you also want to compile with PSATD in RZ, you need to manually install BLAS++ and LAPACK++:

sudo mkdir -p /usr/local/bin/
sudo curl -L -o /usr/local/bin/cmake-easyinstall https://raw.githubusercontent.com/ax3l/cmake-easyinstall/main/cmake-easyinstall
sudo chmod a+x /usr/local/bin/cmake-easyinstall

cmake-easyinstall --prefix=/usr/local git+https://github.com/icl-utk-edu/blaspp.git \
    -Duse_openmp=OFF -Dbuild_tests=OFF -DCMAKE_VERBOSE_MAKEFILE=ON
cmake-easyinstall --prefix=/usr/local git+https://github.com/icl-utk-edu/lapackpp.git \
    -Duse_cmake_find_lapack=ON -Dbuild_tests=OFF -DCMAKE_VERBOSE_MAKEFILE=ON

Compile WarpX with -DWarpX_MPI=ON. For pip, use export WARPX_MPI=ON.

APT (Debian/Ubuntu Linux)

The Advanced Package Tool (APT) is a system-level package manager on Debian-based Linux distributions, including Ubuntu.

sudo apt update
sudo apt install build-essential ccache cmake g++ git libfftw3-mpi-dev libfftw3-dev libhdf5-openmpi-dev libopenmpi-dev pkg-config python3 python3-dev python3-matplotlib python3-mpi4py python3-numpy python3-pandas python3-pip python3-scipy python3-venv

# optional:
# for CUDA, either install
#   https://developer.nvidia.com/cuda-downloads (preferred)
# or, if your Debian/Ubuntu is new enough, use the packages
#   sudo apt install nvidia-cuda-dev libcub-dev

# compile WarpX with -DWarpX_MPI=ON
# for pip, use: export WARPX_MPI=ON
sudo apt update
sudo apt install build-essential ccache cmake g++ git libfftw3-dev libfftw3-dev libhdf5-dev pkg-config python3 python3-dev python3-matplotlib python3-numpy python3-pandas python3-pip python3-scipy python3-venv

# optional:
# for CUDA, either install
#   https://developer.nvidia.com/cuda-downloads (preferred)
# or, if your Debian/Ubuntu is new enough, use the packages
#   sudo apt install nvidia-cuda-dev libcub-dev

# compile WarpX with -DWarpX_MPI=OFF
# for pip, use: export WARPX_MPI=OFF