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Warning: This is an alpha release of WarpX. The code is still in active development. Robustness and perfor-
mance may fluctuate at this stage. The input and output formats may evolve.

WarpX is an advanced electromagnetic Particle-In-Cell code.

It supports many features including:

• Perfectly-Matched Layers (PML)

• Boosted-frame simulations

• Mesh refinement

For details on the algorithms that WarpX implements, see the section Theoretical background.

In addition, WarpX is a highly-parallel and highly-optimized code and features hybrid OpenMP/MPI parallelization,
advanced vectorization techniques and load balancing capabilities.

In order to learn to use the code, please see the sections below:
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CHAPTER 1

Building/installing WarpX

WarpX can be built with various options. This page describes the most basic build, and points to instructions for more
advanced builds.

Even if you are interested in more advanced builds, we recommend reading this page first.

1.1 Downloading the source code

Clone the source codes of WarpX, and its dependencies AMReX and PICSAR into one single directory (e.g.
warpx_directory):

mkdir warpx_directory
cd warpx_directory
git clone --branch dev https://github.com/ECP-WarpX/WarpX.git
git clone --branch master https://bitbucket.org/berkeleylab/picsar.git
git clone --branch development https://github.com/AMReX-Codes/amrex.git

1.2 Basic compilation

WarpX requires a C/C++ and Fortran compiler (e.g., GCC or Intel) and an MPI implementation (e.g., OpenMPI or
MPICH). Then cd into the directory WarpX and type

make -j 4

This will generate an executable file in the Bin directory.

Note: The compilation options are set in the file GNUmakefile. The default options correspond to an optimized
code for 3D geometry. You can modify the options in this file in order to (for instance):

• Use 2D geometry

3
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• Disable OpenMP

• Profile or debug the code

• Choose a given compiler

For a description of these different options, see the corresponding page in the AMReX documentation.

Alternatively, instead of modifying the file GNUmakefile, you can directly pass the options in command line ; for
instance:

make -j 4 USE_OMP=FALSE

In order to clean a previously compiled version:

make realclean

1.3 Advanced building instructions

1.3.1 Building WarpX with support for openPMD output

WarpX can dump data in the openPMD format. This feature currently requires to have a parallel version of HDF5
installed ; therefore we recommend to use spack in order to facilitate the installation.

More specifically, we recommend that you try installing the openPMD-api library 0.9.0a or newer using spack (first
section below). If this fails, a back-up solution is to install parallel HDF5 with spack, and then install the openPMD-api
library from source.

In order to install spack, you can simply do:

git clone https://github.com/spack/spack.git
export SPACK_ROOT=/path/to/spack
. $SPACK_ROOT/share/spack/setup-env.sh

(You may want to add the last 2 lines to your .bashrc file.)

Building openPMD support, by installing openPMD-api directly from spack

First, install the openPMD-api library:

spack install openpmd-api -python +adios1

Then, cd into the WarpX folder, and type:

spack load mpi
spack load openpmd-api
make -j 4 USE_OPENPMD=TRUE

You will also need to load the same spack environment when running WarpX, for instance:

spack load mpi
spack load openpmd-api

mpirun -np 4 ./warpx.exe inputs

4 Chapter 1. Building/installing WarpX
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Building openPMD support, by installing openPMD-api from source

First, install the openPMD-api library, and load it in your environment:

spack install hdf5
spack install adios
spack load -r hdf5
spack load -r adios

Then, in the warpx_directory, download and build the openPMD API:

git clone https://github.com/openPMD/openPMD-api.git
mkdir openPMD-api-build
cd openPMD-api-build
cmake ../openPMD-api -DopenPMD_USE_PYTHON=OFF -DCMAKE_INSTALL_PREFIX=../openPMD-
→˓install/ -DCMAKE_INSTALL_RPATH_USE_LINK_PATH=ON -DCMAKE_INSTALL_RPATH='$ORIGIN'
cmake --build . --target install

Finally, compile WarpX:

cd ../WarpX
export PKG_CONFIG_PATH=$PWD/../openPMD-install/lib/pkgconfig:$PKG_CONFIG_PATH
make -j 4 USE_OPENPMD=TRUE

You will also need to load the same spack environment when running WarpX, for instance:

spack load openmpi
spack load hdf5
spack load adios

mpirun -np 4 ./warpx.exe inputs

1.3.2 Building the spectral solver

By default, the code is compiled with a finite-difference (FDTD) Maxwell solver. In order to run the code with a
spectral solver, you need to:

• Install (or load) an MPI-enabled version of FFTW. For instance, for Debian, this can be done with

apt-get install libfftw3-dev libfftw3-mpi-dev

• Set the environment variable FFTW_HOME to the path for FFTW. For instance, for Debian, this is done with

export FFTW_HOME=/usr/

• Set USE_PSATD=TRUE when compiling:

make -j 4 USE_PSATD=TRUE

Note that this is not compatible with USE_RZ yet.

1.3.3 Building WarpX to use RZ geometry

WarpX can be built to run with RZ geometry. Currently, this only allows pure axisymmetry (i.e. mode 0) with an
FDTD solver.

1.3. Advanced building instructions 5
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To select RZ geometry, set the flag USE_RZ = TRUE when compiling:

make -j 4 USE_RZ=TRUE

Note that this sets DIM=2, which is required with USE_RZ=TRUE. The executable produced will have “RZ” as a
suffix. Currently does not work with USE_PSATD.

1.3.4 Building WarpX with GPU support (Linux only)

Warning: In order to build WarpX on a specific GPU cluster (e.g. Summit), look for the corresponding specific
instructions, instead of those on this page.

In order to build WarpX with GPU support, make sure that you have cuda and mpich installed on your system.
(Compiling with openmpi currently fails.) Then compile WarpX with the option USE_GPU=TRUE, e.g.

make -j 4 USE_GPU=TRUE

1.3.5 Installing WarpX as a Python package

Type

make -j 4 USE_PYTHON_MAIN=TRUE

or edit the GNUmakefile and set USE_PYTHON_MAIN=TRUE, and type

make -j 4

This will compile the code, and install the Python bindings as a package (named pywarpx) in your standard Python
installation (i.e. in your site-packages directory). The note on compiler options from the previous section also
holds when compiling the Python package.

In case you do not have write permissions to the default Python installation (e.g. typical on computer clusters), use the
following command instead:

make -j 4 PYINSTALLOPTIONS=--user

In this case, you can also set the variable PYTHONUSERBASE to set the folder where pywarpx will be installed.

1.3.6 Building WarpX with Spack

WarpX can be installed using Spack. From the Spack web page: “Spack is a package management tool designed to
support multiple versions and configurations of software on a wide variety of platforms and environments.”

Spack is available from github. Spack only needs to be cloned and can be used right away - there are no installation
steps. The spack command, “spack/bin/spack”, can be used directly or “spack/bin” can be added to your execute path.

WarpX is built with the single command

spack install warpx

6 Chapter 1. Building/installing WarpX
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This will build the 3-D version of WarpX using the master branch. At the very end of the output from build sequence,
Spack tells you where the WarpX executable has been placed. Alternatively, the “spack load” command can be
configured so that “spack load warpx” will put the executable in your execute path.

To build using the dev branch, the command is

spack install warpx@dev

Other variants of WarpX can be installed, for example

spack install warpx dims=2

will build the 2-D version.

spack install warpx debug=True

will build with debugging turned on.

spack install warpx %intel

will build using the intel compiler (instead of gcc).

The Python verson of WarpX is not yet available with Spack.

1.4 Building for specific platforms

1.4.1 Building WarpX for Cori (NERSC)

Standard build

For the Cori cluster at NERSC, you need to type the following command when compiling:

Note: In order to compile the code with a spectral solver, type

module load cray-fftw

before typing any of the commands below, and add USE_PSATD=TRUE at the end of the command containing make.

In order to compile for the Haswell architecture:

• with the Intel compiler

make -j 16 COMP=intel

• with the GNU compiler

module swap PrgEnv-intel PrgEnv-gnu
make -j 16 COMP=gnu

In order to compile for the Knight’s Landing (KNL) architecture:

• with the Intel compiler

module swap craype-haswell craype-mic-knl
make -j 16 COMP=intel

1.4. Building for specific platforms 7
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• with the GNU compiler

module swap craype-haswell craype-mic-knl
module swap PrgEnv-intel PrgEnv-gnu
make -j 16 COMP=gnu

See Running on specific platforms for more information on how to run WarpX on Cori.

GPU Build

To compile on the experimental GPU nodes on Cori, you first need to purge your modules, most of which won’t work
on the GPU nodes.

module purge

Then, you need to load the following modules:

module load modules esslurm gcc/7.3.0 cuda mvapich2

You can also use OpenMPI-UCX instead of mvapich: openmpi/4.0.1-ucx-1.6.

Then, you need to use slurm to request access to a GPU node:

salloc -C gpu -N 1 -t 30 -c 10 --gres=gpu:1 -A m1759

This reserves 10 logical cores (5 physical), 1 GPU. The latest documentation can be found here: https://docs-dev.
nersc.gov/cgpu/access Note that you can’t cross-compile for the GPU nodes - you have to log on to one and then build
your software.

Finally, navigate to the base of the WarpX repository and compile in GPU mode:

make -j 16 USE_GPU=TRUE

Building WarpX with openPMD support

First, load the appropriate modules:

module swap craype-haswell craype-mic-knl
module swap PrgEnv-intel PrgEnv-gnu
module load cmake/3.14.4
module load cray-hdf5-parallel
module load adios/1.13.1
export CRAYPE_LINK_TYPE=dynamic

Then, in the warpx_directory, download and build the openPMD API:

git clone https://github.com/openPMD/openPMD-api.git
mkdir openPMD-api-build
cd openPMD-api-build
cmake ../openPMD-api -DopenPMD_USE_PYTHON=OFF -DCMAKE_INSTALL_PREFIX=../openPMD-
→˓install/ -DCMAKE_INSTALL_RPATH_USE_LINK_PATH=ON -DCMAKE_INSTALL_RPATH='$ORIGIN'
cmake --build . --target install

Finally, compile WarpX:

8 Chapter 1. Building/installing WarpX
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cd ../WarpX
export PKG_CONFIG_PATH=$PWD/../openPMD-install/lib64/pkgconfig:$PKG_CONFIG_PATH
make -j 16 COMP=gnu USE_OPENPMD=TRUE

In order to run WarpX, load the same modules again.

1.4.2 Building WarpX for Summit (OLCF)

For the Summit cluster at OLCF, use the following commands to download the source code, and switch to the correct
branch:

mkdir warpx_directory
cd warpx_directory

git clone --branch dev https://github.com/ECP-WarpX/WarpX.git
git clone --branch master https://bitbucket.org/berkeleylab/picsar.git
git clone --branch development https://github.com/AMReX-Codes/amrex.git

Then, cd into the directory WarpX and use the following set of commands to compile:

module load gcc
module load cuda
make -j 4 USE_GPU=TRUE

See Running on specific platforms for more information on how to run WarpX on Summit.

1.4. Building for specific platforms 9
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CHAPTER 2

Running WarpX as an executable

2.1 How to run a new simulation

After compiling the code, the WarpX executable is stored in the folder warpx/Bin. (Its name starts with main but
depends on the compiler options.)

In order to run a new simulation:

• Create a new directory, where the simulation will be run.

• Copy the executable to this directory:

cp warpx/Bin/<warpx_executable> <run_directory>/warpx.exe

where <warpx_executable> should be replaced by the actual name of the executable (see above) and
<run_directory> by the actual path to the run directory.

• Add an input file in the directory.

This file contains the numerical and physical parameters that define the situation to be simulated. Example input files
can be found in the section Example input files. The different parameters in these files are explained in the section
Input parameters.

• Run the executable:

mpirun -np <n_ranks> ./warpx.exe <input_file>

where <n_ranks> is the number of MPI ranks used, and <input_file> is the name of the input file.

2.2 Example input files

This section allows you to download input files that correspond to different physical situations. For a definition of
the different parameters that are set in these files, see the section Input parameters.

11
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2.2.1 Beam-driven acceleration

• 2D case

• 2D case in boosted frame

• 3D case in boosted frame

2.2.2 Laser-driven acceleration

• 2D case

• 2D case in boosted frame

• 3D case

2.2.3 Plasma mirror

2D case

2.2.4 Uniform plasma

2D case 3D case

2.3 Input parameters

Warning: This section is currently in development.

2.3.1 Overall simulation parameters

• max_step (integer) The number of PIC cycles to perform.

• warpx.gamma_boost (float) The Lorentz factor of the boosted frame in which the simulation is run. (The
corresponding Lorentz transformation is assumed to be along warpx.boost_direction.)

When using this parameter, some of the input parameters are automatically converted to the boosted frame.
(See the corresponding documentation of each input parameters.)

Note: For now, only the laser parameters will be converted.

• warpx.boost_direction (string: x, y or z) The direction of the Lorentz-transform for boosted-frame
simulations (The direction y cannot be used in 2D simulations.)

• warpx.zmax_plasma_to_compute_max_step (float) optional Can be useful when running in
a boosted frame. If specified, automatically calculates the number of iterations required
in the boosted frame for the lower z end of the simulation domain to reach warpx.
zmax_plasma_to_compute_max_step (typically the plasma end, given in the lab frame). The
value of max_step is overwritten, and printed to standard output. Currently only works if the Lorentz
boost and the moving window are along the z direction.

• warpx.verbose (0 or 1) Controls how much information is printed to the terminal, when running WarpX.

12 Chapter 2. Running WarpX as an executable



WarpX Documentation

2.3.2 Setting up the field mesh

• amr.n_cell (2 integers in 2D, 3 integers in 3D) The number of grid points along each direction (on the
coarsest level)

• amr.max_level (integer) When using mesh refinement, the number of refinement levels that will be used.

Use 0 in order to disable mesh refinement.

• geometry.is_periodic (2 integers in 2D, 3 integers in 3D) Whether the boundary conditions are peri-
odic, in each direction.

For each direction, use 1 for periodic conditions, 0 otherwise.

• geometry.coord_sys (integer) optional (default 0) Coordinate system used by the simulation. 0 for
Cartesian, 1 for cylindrical.

• geometry.prob_lo and geometry.prob_hi (2 floats in 2D, 3 integers in 3D; in meters) The extent
of the full simulation box. This box is rectangular, and thus its extent is given here by the coordinates
of the lower corner (geometry.prob_lo) and upper corner (geometry.prob_hi). The first axis of
the coordinates is x (or r with cylindrical) and the last is z.

• warpx.fine_tag_lo and warpx.fine_tag_hi (2 floats in 2D, 3 integers in 3D; in meters) optional
When using static mesh refinement with 1 level, the extent of the refined patch. This patch is rectangu-
lar, and thus its extent is given here by the coordinates of the lower corner (warpx.fine_tag_lo) and
upper corner (warpx.fine_tag_hi).

• warpx.n_current_deposition_buffer (integer) When using mesh refinement: the particles that are
located inside a refinement patch, but within n_current_deposition_buffer cells of the edge of
this patch, will deposit their charge and current to the lower refinement level, instead of depositing to the
refinement patch itself. See the section Mesh refinement for more details. If this variable is not explicitly
set in the input script, n_current_deposition_buffer is automatically set so as to be large enough
to hold the particle shape, on the fine grid

• warpx.n_field_gather_buffer (integer; 0 by default) When using mesh refinement: the particles
that are located inside a refinement patch, but within n_field_gather_buffer cells of the edge
of this patch, will gather the fields from the lower refinement level, instead of gathering the fields from
the refinement patch itself. This avoids some of the spurious effects that can occur inside the refinement
patch, close to its edge. See the section Mesh refinement for more details. If this variable is not explicitly
set in the input script, n_field_gather_buffer is automatically set so that it is one cell larger than
n_current_deposition_buffer, on the fine grid.

• particles.deposit_on_main_grid (list of strings) When using mesh refinement: the particle species
whose name are included in the list will deposit their charge/current directly on the main grid (i.e. the
coarsest level), even if they are inside a refinement patch.

• particles.gather_from_main_grid (list of strings) When using mesh refinement: the particle
species whose name are included in the list will gather their fields from the main grid (i.e. the coars-
est level), even if they are inside a refinement patch.

• warpx.n_rz_azimuthal_modes (integer; 1 by default) When using the RZ version, this is the number
of azimuthal modes.

2.3.3 Distribution across MPI ranks and parallelization

• amr.max_grid_size (integer) optional (default 128) Maximum allowable size of each subdomain (ex-
pressed in number of grid points, in each direction). Each subdomain has its own ghost cells, and can be
handled by a different MPI rank ; several OpenMP threads can work simultaneously on the same subdo-
main.

2.3. Input parameters 13
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If max_grid_size is such that the total number of subdomains is larger that the number of MPI ranks
used, than some MPI ranks will handle several subdomains, thereby providing additional flexibility for
load balancing.

When using mesh refinement, this number applies to the subdomains of the coarsest level, but also to any
of the finer level.

• warpx.load_balance_int (integer) optional (default -1) How often WarpX should try to redistribute
the work across MPI ranks, in order to have better load balancing (expressed in number of PIC cycles
inbetween two consecutive attempts at redistributing the work). Use 0 to disable load_balancing.

When performing load balancing, WarpX measures the wall time for computational parts of the PIC cycle.
It then uses this data to decide how to redistribute the subdomains across MPI ranks. (Each subdomain is
unchanged, but its owner is changed in order to have better performance.) This relies on each MPI rank
handling several (in fact many) subdomains (see max_grid_size).

• warpx.load_balance_with_sfc (0 or 1) optional (default 0) If this is 1: use a Space-Filling Curve
(SFC) algorithm in order to perform load-balancing of the simulation. If this is 0: the Knapsack algorithm
is used instead.

• warpx.do_dynamic_scheduling (0 or 1) optional (default 1) Whether to activate OpenMP dynamic
scheduling.

2.3.4 Math parser and user-defined constants

WarpX provides a math parser that reads expressions in the input file. It can be used to define the plasma density
profile, the plasma momentum distribution or the laser field (see below Particle initialization and Laser initialization).

The parser reads python-style expressions between double quotes, for instance "a0*x**2 * (1-y*1.e2) *
(x>0)" is a valid expression where a0 is a user-defined constant and x and y are variables. The names are case
sensitive. The factor (x>0) is 1 where x>0 and 0 where x<=0. It allows the user to define functions by in-
tervals. User-defined constants can be used in parsed functions only (i.e., density_function(x,y,z) and
field_function(X,Y,t), see below). User-defined constants can contain only letter, numbers and character _.
The name of each constant has to begin with a letter. The following names are used by WarpX, and cannot be used as
user-defined constants: x, y, z, X, Y, t. For example, parameters a0 and z_plateau can be specified with:

• my_constants.a0 = 3.0

• my_constants.z_plateau = 150.e-6

2.3.5 Particle initialization

• particles.nspecies (int) The number of species that will be used in the simulation.

• particles.species_names (strings, separated by spaces) The name of each species. This is then used
in the rest of the input deck ; in this documentation we use <species_name> as a placeholder.

• particles.use_fdtd_nci_corr (0 or 1) optional (default 0) Whether to activate the FDTD Numeri-
cal Cherenkov Instability corrector.

• particles.rigid_injected_species (strings, separated by spaces) List of species injected using
the rigid injection method. The rigid injection method is useful when injecting a relativistic particle beam,
in boosted-frame simulation ; see the section Inputs and outputs for more details. For species injected using
this method, particles are translated along the +z axis with constant velocity as long as their z coordinate
verifies z<zinject_plane. When z>zinject_plane, particles are pushed in a standard way, using
the specified pusher. (see the parameter <species_name>.zinject_plane below)

• <species_name>.charge (float) The charge of one physical particle of this species.

14 Chapter 2. Running WarpX as an executable
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• <species_name>.mass (float) The mass of one physical particle of this species.

• <species_name>.injection_style (string) Determines how the particles will be injected in the sim-
ulation. The options are:

– NUniformPerCell: injection with a fixed number of evenly-spaced particles per cell. This requires
the additional parameter <species_name>.num_particles_per_cell_each_dim.

– NRandomPerCell: injection with a fixed number of randomly-distributed particles per cell. This
requires the additional parameter <species_name>.num_particles_per_cell.

– gaussian_beam: Inject particle beam with gaussian distribution in space in all directions. This
requires additional parameters: <species_name>.q_tot (beam charge), <species_name>.
npart (number of particles in the beam), <species_name>.x/y/z_m (average position in
x/y/z), <species_name>.x/y/z_rms (standard deviation in x/y/z), and optional argument
<species_name>.do_symmetrize (whether to symmetrize the beam in the x and y directions).

• <species_name>.num_particles_per_cell_each_dim (3 integers in 3D and RZ, 2 integers in 2D)
With the NUniformPerCell injection style, this specifies the number of particles along each axis within a
cell. Note that for RZ, the three axis are radius, theta, and z.

• <species_name>.do_continuous_injection (0 or 1) Whether to inject particles during the simu-
lation, and not only at initialization. This can be required whith a moving window and/or when running in
a boosted frame.

• <species_name>.profile (string) Density profile for this species. The options are:

– constant: Constant density profile within the box, or between <species_name>.xmin
and <species_name>.xmax (and same in all directions). This requires additional parameter
<species_name>.density. i.e., the plasma density in 𝑚−3.

– parse_density_function: the density is given by a function in the input file. It requires ad-
ditional argument <species_name>.density_function(x,y,z), which is a mathematical
expression for the density of the species, e.g. electrons.density_function(x,y,z) =
"n0+n0*x**2*1.e12" where n0 is a user-defined constant, see above.

• <species_name>.density_min (float) optional (default 0.) Minimum plasma density. No particle is
injected where the density is below this value.

• <species_name>.density_max (float) optional (default infinity) Maximum plasma density. The den-
sity at each point is the minimum between the value given in the profile, and density_max.

• <species_name>.radially_weighted (bool) optional (default true) Whether particle’s weight is
varied with their radius. This only applies to cylindrical geometry. The only valid value is true.

– predefined: use one of WarpX predefined plasma profiles. It requires additional ar-
guments <species_name>.predefined_profile_name and <species_name>.
predefined_profile_params (see below).

• <species_name>.momentum_distribution_type (string) Distribution of the normalized momen-
tum (u=p/mc) for this species. The options are:

– constant: constant momentum profile. This requires additional parameters <species_name>.
ux, <species_name>.uy and <species_name>.uz, the normalized momenta in the x, y and
z direction respectively.

– gaussian: gaussian momentum distribution in all 3 directions. This requires additional arguments
for the average momenta along each direction <species_name>.ux_m, <species_name>.
uy_m and <species_name>.uz_m as well as standard deviations along each direction
<species_name>.ux_th, <species_name>.uy_th and <species_name>.uz_th.

2.3. Input parameters 15
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– radial_expansion: momentum depends on the radial coordinate linearly. This requires addi-
tional parameter u_over_r which is the slope.

– parse_momentum_function: the momentum is given by a function in the input
file. It requires additional arguments <species_name>.momentum_function_ux(x,
y,z), <species_name>.momentum_function_uy(x,y,z) and <species_name>.
momentum_function_uz(x,y,z), which gives the distribution of each component of the mo-
mentum as a function of space.

• <species_name>.zinject_plane (float) Only read if <species_name> is in particles.
rigid_injected_species. Injection plane when using the rigid injection method. See
particles.rigid_injected_species above.

• <species_name>.rigid_advance (bool) Only read if <species_name> is in particles.
rigid_injected_species.

– If false, each particle is advanced with its own velocity vz until it reaches zinject_plane.

– If true, each particle is advanced with the average speed of the species vzbar until it reaches
zinject_plane.

• species_name.predefined_profile_name (string) Only read of <species_name>.
electrons.profile is predefined.

– If parabolic_channel, the plasma profile is a parabolic profile with cosine-like ramps at the
beginning and the end of the profile. The density is given by

𝑛 = 𝑛0𝑛(𝑥, 𝑦)𝑛(𝑧)

with

𝑛(𝑥, 𝑦) = 1 + 4
𝑥2 + 𝑦2

𝑘2𝑝𝑅
4
𝑐

where 𝑘𝑝 is the plasma wavenumber associated with density 𝑛0. Here, 𝑛(𝑧) is a cosine-like up-ramp
from 0 to 𝐿𝑟𝑎𝑚𝑝,𝑢𝑝, constant to 1 from 𝐿𝑟𝑎𝑚𝑝,𝑢𝑝 to 𝐿𝑟𝑎𝑚𝑝,𝑢𝑝 + 𝐿𝑝𝑙𝑎𝑡𝑒𝑎𝑢 and a cosine-like down-
ramp from 𝐿𝑟𝑎𝑚𝑝,𝑢𝑝 + 𝐿𝑝𝑙𝑎𝑡𝑒𝑎𝑢 to 𝐿𝑟𝑎𝑚𝑝,𝑢𝑝 + 𝐿𝑝𝑙𝑎𝑡𝑒𝑎𝑢 + 𝐿𝑟𝑎𝑚𝑝,𝑑𝑜𝑤𝑛. All parameters are given in
predefined_profile_params.

• <species_name>.predefined_profile_params (list of float) Parameters for the predefined pro-
files.

– If species_name.predefined_profile_name is parabolic_channel,
predefined_profile_params contains a space-separated list of the following parame-
ters, in this order: 𝐿𝑟𝑎𝑚𝑝,𝑢𝑝 𝐿𝑝𝑙𝑎𝑡𝑒𝑎𝑢 𝐿𝑟𝑎𝑚𝑝,𝑑𝑜𝑤𝑛 𝑅𝑐 𝑛0

• <species_name>.do_backward_propagation (bool) Inject a backward-propagating beam to reduce
the effect of charge-separation fields when running in the boosted frame. See examples.

• <species_name>.do_splitting (bool) optional (default 0) Split particles of the species when cross-
ing the boundary from a lower resolution domain to a higher resolution domain.

• <species_name>.split_type (int) optional (default 0) Splitting technique. When 0, particles are split
along the simulation axes (4 particles in 2D, 6 particles in 3D). When 1, particles are split along the
diagonals (4 particles in 2D, 8 particles in 3D).

• <species>.plot_species (0 or 1 optional; default 1) Whether to plot particle quantities for this
species.

• <species>.plot_vars (list of strings separated by spaces, optional) List of particle quantities to write
to plotfiles. By defaults, all quantities are written to file. Choices are
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– w for the particle weight,

– ux uy uz for the particle momentum,

– Ex Ey Ez for the electric field on particles,

– Bx By Bz for the magnetic field on particles.

The particle positions are always included. Use <species>.plot_vars = none to plot no particle
data, except particle position.

• <species>.do_boosted_frame_diags (0 or 1 optional, default 1) Only used when warpx.
do_boosted_frame_diagnostic=1. When running in a boosted frame, whether or not to plot
back-transformed diagnostics for this species.

• warpx.serialize_ics (0 or 1) Whether or not to use OpenMP threading for particle initialization.

• <species>.do_field_ionization (0 or 1) optional (default 0) Do field ionization for this species
(using the ADK theory).

• <species>.physical_element (string) Only read if do_field_ionization = 1. Symbol of chemical ele-
ment for this species. Example: for Helium, use physical_element = He.

• <species>.ionization_product_species (string) Only read if do_field_ionization = 1. Name of
species in which ionized electrons are stored. This species must be created as a regular species in the input
file (in particular, it must be in particles.species_names).

• <species>.ionization_initial_level (int) optional (default 0) Only read if do_field_ionization
= 1. Initial ionization level of the species (must be smaller than the atomic number of chemical element
given in physical_element).

2.3.6 Laser initialization

• lasers.nlasers (int) optional (default 0) Number of lasers pulses.

• lasers.names (list of string. Must contain lasers.nlasers elements) Name of each laser. This is
then used in the rest of the input deck ; in this documentation we use <laser_name> as a placeholder.
The parameters below must be provided for each laser pulse.

• `<laser_name>`.position (3 floats in 3D and 2D ; in meters) The coordinates of one of the point of
the antenna that will emit the laser. The plane of the antenna is entirely defined by <laser_name>.
position and <laser_name>.direction.

`<laser_name>`.position also corresponds to the origin of the coordinates system for the laser
tranverse profile. For instance, for a Gaussian laser profile, the peak of intensity will be at the position
given by <laser_name>.position. This variable can thus be used to shift the position of the laser
pulse transversally.

Note: In 2D, `<laser_name>`.position is still given by 3 numbers, but the second number is
ignored.

When running a boosted-frame simulation, provide the value of <laser_name>.position in the
laboratory frame, and use warpx.gamma_boost to automatically perform the conversion to the boosted
frame. Note that, in this case, the laser antenna will be moving, in the boosted frame.

• <laser_name>.polarization (3 floats in 3D and 2D) The coordinates of a vector that points in the di-
rection of polarization of the laser. The norm of this vector is unimportant, only its direction matters.
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Note: Even in 2D, all the 3 components of this vectors are important (i.e. the polarization can be
orthogonal to the plane of the simulation).

• <laser_name>.direction (3 floats in 3D) The coordinates of a vector that points in the propagation di-
rection of the laser. The norm of this vector is unimportant, only its direction matters.

The plane of the antenna that will emit the laser is orthogonal to this vector.

Warning: When running boosted-frame simulations, <laser_name>.direction should be
parallel to warpx.boost_direction, for now.

• <laser_name>.e_max (float ; in V/m) Peak amplitude of the laser field.

For a laser with a wavelength 𝜆 = 0.8𝜇𝑚, the peak amplitude is related to 𝑎0 by:

𝐸𝑚𝑎𝑥 = 𝑎0
2𝜋𝑚𝑒𝑐

𝑒𝜆
= 𝑎0 × (4.0 · 1012 𝑉.𝑚−1)

When running a boosted-frame simulation, provide the value of <laser_name>.e_max in the lab-
oratory frame, and use warpx.gamma_boost to automatically perform the conversion to the boosted
frame.

• <laser_name>.wavelength (float; in meters) The wavelength of the laser in vacuum.

When running a boosted-frame simulation, provide the value of <laser_name>.wavelength in the
laboratory frame, and use warpx.gamma_boost to automatically perform the conversion to the boosted
frame.

• <laser_name>.profile (string) The spatio-temporal shape of the laser. The options that are currently
implemented are:

– "Gaussian": The transverse and longitudinal profiles are Gaussian.

– "Harris": The transverse profile is Gaussian, but the longitudinal profile is given by the Harris
function (see <laser_name>.profile_duration for more details)

– "parse_field_function": the laser electric field is given by a function in the input file. It re-
quires additional argument <laser_name>.field_function(X,Y,t), which is a mathemat-
ical expression , e.g. <laser_name>.field_function(X,Y,t) = "a0*X**2 * (X>0)

* cos(omega0*t)" where a0 and omega0 are a user-defined constant, see above. The pro-
file passed here is the full profile, not only the laser envelope. t is time and X and Y are co-
ordinates orthogonal to <laser_name>.direction (not necessarily the x and y coordinates
of the simulation). All parameters above are required, but none of the parameters below are
used when <laser_name>.parse_field_function=1. Even though <laser_name>.
wavelength and <laser_name>.e_max should be included in the laser function, they still have
to be specified as they are used for numerical purposes.

• <laser_name>.profile_t_peak (float; in seconds) The time at which the laser reaches its peak inten-
sity, at the position given by <laser_name>.position (only used for the "gaussian" profile)

When running a boosted-frame simulation, provide the value of <laser_name>.profile_t_peak
in the laboratory frame, and use warpx.gamma_boost to automatically perform the conversion to the
boosted frame.

• <laser_name>.profile_duration (float ; in seconds)

The duration of the laser, defined as 𝜏 below:

– For the "gaussian" profile:
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𝐸(𝑥, 𝑡) ∝ exp

(︂
− (𝑡− 𝑡𝑝𝑒𝑎𝑘)2

𝜏2

)︂
– For the "harris" profile:

𝐸(𝑥, 𝑡) ∝ 1

32

[︂
10 − 15 cos

(︂
2𝜋𝑡

𝜏

)︂
+ 6 cos

(︂
4𝜋𝑡

𝜏

)︂
− cos

(︂
6𝜋𝑡

𝜏

)︂]︂
Θ(𝜏 − 𝑡)

When running a boosted-frame simulation, provide the value of <laser_name>.
profile_duration in the laboratory frame, and use warpx.gamma_boost to automatically
perform the conversion to the boosted frame.

• <laser_name>.profile_waist (float ; in meters) The waist of the transverse Gaussian laser profile,
defined as 𝑤0 :

𝐸(𝑥, 𝑡) ∝ exp

(︂
−𝑥2

⊥
𝑤2

0

)︂

• <laser_name>.profile_focal_distance (float; in meters) The distance from
laser_position to the focal plane. (where the distance is defined along the direction given by
<laser_name>.direction.)

Use a negative number for a defocussing laser instead of a focussing laser.

When running a boosted-frame simulation, provide the value of <laser_name>.
profile_focal_distance in the laboratory frame, and use warpx.gamma_boost to auto-
matically perform the conversion to the boosted frame.

• <laser_name>.stc_direction (3 floats) optional (default 1. 0. 0.) Direction of laser spatio-temporal
couplings. See definition in Akturk et al., Opt Express, vol 12, no 19 (2014).

• <laser_name>.zeta (float; in meters.seconds) optional (default 0.) Spatial chirp at focus in direction
<laser_name>.stc_direction. See definition in Akturk et al., Opt Express, vol 12, no 19 (2014).

• <laser_name>.beta (float; in seconds) optional (default 0.) Angular dispersion (or angular chirp) at fo-
cus in direction <laser_name>.stc_direction. See definition in Akturk et al., Opt Express, vol
12, no 19 (2014).

• <laser_name>.phi2 (float; in seconds**2) optional (default 0.) Temporal chirp at focus. See definition
in Akturk et al., Opt Express, vol 12, no 19 (2014).

• <laser_name>.do_continuous_injection (0 or 1) optional (default 0). Whether or not to use
continuous injection. If the antenna starts outside of the simulation domain but enters it at some point
(due to moving window or moving antenna in the boosted frame), use this so that the laser antenna is
injected when it reaches the box boundary. If running in a boosted frame, this requires the boost direction,
moving window direction and laser propagation direction to be along z. If not running in a boosted frame,
this requires the moving window and laser propagation directions to be the same (x, y or z)

• <laser_name>.min_particles_per_mode (int) optional (default 4) When using the RZ version,
this specifies the minimum number of particles per angular mode. The laser particles are loaded into radial
spokes, with the number of spokes given by min_particles_per_mode*(warpx.n_rz_azimuthal_modes-1).

• warpx.num_mirrors (int) optional (default 0) Users can input perfect mirror condition inside the simula-
tion domain. The number of mirrors is given by warpx.num_mirrors. The mirrors are orthogonal to
the z direction. The following parameters are required when warpx.num_mirrors is >0.

• warpx.mirror_z (list of float) required if warpx.num_mirrors>0 z location of the front of the mir-
rors.

• warpx.mirror_z_width (list of float) required if warpx.num_mirrors>0 z width of the mirrors.
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• warpx.mirror_z_npoints (list of int) required if warpx.num_mirrors>0 In the boosted frame,
depending on gamma_boost, warpx.mirror_z_width can be smaller than the cell size, so that
the mirror would not work. This parameter is the minimum number of points for the mirror. If
mirror_z_width < dz/cell_size, the upper bound of the mirror is increased so that it contains
at least mirror_z_npoints.

2.3.7 Numerics and algorithms

• warpx.cfl (float) The ratio between the actual timestep that is used in the simulation and the Courant-
Friedrichs-Lewy (CFL) limit. (e.g. for warpx.cfl=1, the timestep will be exactly equal to the CFL limit.)

• warpx.use_filter (0 or 1) Whether to smooth the charge and currents on the mesh, after depositing them
from the macroparticles. This uses a bilinear filter (see the sub-section Filtering in Theoretical back-
ground).

• warpx.filter_npass_each_dir (3 int) optional (default 1 1 1) Number of passes along each direc-
tion for the bilinear filter. In 2D simulations, only the first two values are read.

• algo.current_deposition (string, optional) The algorithm for current deposition. Available options
are:

– esirkepov: the charge-conserving Esirkepov algorithm (see Esirkepov, Comp. Phys. Comm.
(2001))

– direct: simpler current deposition algorithm, described in the section The electromagnetic Particle-
In-Cell method. Note that this algorithm is not strictly charge-conserving.

If algo.current_deposition is not specified, the default is esirkepov.

• algo.charge_deposition (string, optional) The algorithm for the charge density deposition. Available
options are:

– standard: standard charge deposition algorithm, described in the section The electromagnetic
Particle-In-Cell method.

• algo.field_gathering (string, optional) The algorithm for field gathering. Available options are:

– standard: gathers directly from the grid points (either staggered or nodal gridpoints depending on
warpx.do_nodal).

• algo.particle_pusher (string, optional) The algorithm for the particle pusher. Available options are:

– boris: Boris pusher.

– vay: Vay pusher (see Vay, Phys. Plasmas (2008))

If algo.particle_pusher is not specified, boris is the default.

• algo.maxwell_fdtd_solver (string, optional) The algorithm for the FDTD Maxwell field solver.
Available options are:

– yee: Yee FDTD solver.

– ckc: (not available in RZ geometry) Cole-Karkkainen solver with Cowan coefficients (see
Cowan, PRSTAB 16 (2013))

If algo.maxwell_fdtd_solver is not specified, yee is the default.

• interpolation.nox, interpolation.noy, interpolation.noz (integer) The order of the
shape factors for the macroparticles, for the 3 dimensions of space. Lower-order shape factors result in
faster simulations, but more noisy results,
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Note that the implementation in WarpX is more efficient when these 3 numbers are equal, and when they
are between 1 and 3.

• warpx.do_dive_cleaning (0 or 1 ; default: 0) Whether to use modified Maxwell equations that pro-
gressively eliminate the error in 𝑑𝑖𝑣(𝐸)− 𝜌. This can be useful when using a current deposition algorithm
which is not strictly charge-conserving, or when using mesh refinement. These modified Maxwell equa-
tion will cause the error to propagate (at the speed of light) to the boundaries of the simulation domain,
where it can be absorbed.

• warpx.do_nodal (0 or 1 ; default: 0) Whether to use a nodal grid (i.e. all fields are defined at the same
points in space) or a staggered grid (i.e. Yee grid ; different fields are defined at different points in space)

• warpx.do_subcycling (0 or 1; default: 0) Whether or not to use sub-cycling. Different refinement levels
have a different cell size, which results in different Courant–Friedrichs–Lewy (CFL) limits for the time
step. By default, when using mesh refinement, the same time step is used for all levels. This time step is
taken as the CFL limit of the finest level. Hence, for coarser levels, the timestep is only a fraction of the
CFL limit for this level, which may lead to numerical artifacts. With sub-cycling, each level evolves with
its own time step, set to its own CFL limit. In practice, it means that when level 0 performs one iteration,
level 1 performs two iterations. Currently, this option is only supported when amr.max_level = 1.
More information can be found at https://ieeexplore.ieee.org/document/8659392.

• psatd.nox, psatd.noy, pstad.noz (integer) optional (default 16 for all) The order of accuracy of the
spatial derivatives, when using the code compiled with a PSATD solver.

• psatd.hybrid_mpi_decomposition (0 or 1; default: 0) Whether to use a different MPI decomposi-
tion for the particle-grid operations (deposition and gather) and for the PSATD solver. If 1, the FFT will
be performed over MPI groups.

• psatd.ngroups_fft (integer) The number of MPI groups that are created for the FFT, when using the
code compiled with a PSATD solver (and only if hybrid_mpi_decomposition is 1). The FFTs are global
within one MPI group and use guard cell exchanges in between MPI groups. (If ngroups_fft is larger
than the number of MPI ranks used, than the actual number of MPI ranks is used instead.)

• psatd.fftw_plan_measure (0 or 1) Defines whether the parameters of FFTW plans will be initial-
ized by measuring and optimizing performance (FFTW_MEASURE mode; activated by default here). If
psatd.fftw_plan_measure is set to 0, then the best parameters of FFTW plans will simply be
estimated (FFTW_ESTIMATE mode). See this section of the FFTW documentation for more information.

• warpx.override_sync_int (integer) optional (default 10) Number of time steps between synchroniza-
tion of sources (rho and J) on grid nodes at box boundaries. Since the grid nodes at the interface between
two neighbor boxes are duplicated in both boxes, an instability can occur if they have too different values.
This option makes sure that they are synchronized periodically.

2.3.8 Boundary conditions

• warpx.do_pml (0 or 1; default: 1) Whether to add Perfectly Matched Layers (PML) around the simulation
box, and around the refinement patches. See the section Boundary conditions for more details.

• warpx.pml_ncells (int; default: 10) The depth of the PML, in number of cells.

• warpx.pml_delta (int; default: 10) The characteristic depth, in number of cells, over which the absorption
coefficients of the PML increases.

• warpx.do_pml_in_domain (int; default: 0) Whether to create the PML inside the simulation area or out-
side. If inside, it allows the user to propagate particles in PML and to use extended PML

• warpx.do_pml_has_particles (int; default: 0) Whether to propagate particles in PML or not. Can
only be done if PML are in simulation domain, i.e. if warpx.do_pml_in_domain = 1.
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• warpx.do_pml_j_damping (int; default: 0) Whether to damp current in PML. Can only be used if parti-
cles are propagated in PML, i.e. if warpx.do_pml_has_particles = 1.

• warpx.do_pml_Lo (2 ints in 2D, 3 ints in 3D; default: 1 1 1) The directions along which one wants a pml
boundary condition for lower boundaries on mother grid.

• warpx.do_pml_Hi (2 floats in 2D, 3 floats in 3D; default: 1 1 1) The directions along which one wants a
pml boundary condition for upper boundaries on mother grid.

2.3.9 Diagnostics and output

• amr.plot_int (integer) The number of PIC cycles inbetween two consecutive data dumps. Use a negative
number to disable data dumping.

• warpx.dump_plotfiles (0 or 1) optional Whether to dump the simulation data in AMReX plotfile for-
mat. This is 1 by default, unless WarpX is compiled with openPMD support.

• warpx.dump_openpmd (0 or 1) optional Whether to dump the simulation data in openPMD format. When
WarpX is compiled with openPMD support, this is 1 by default.

• warpx.openpmd_backend (h5, bp or json) optional I/O backend for openPMD dumps. When WarpX
is compiled with openPMD support, this is h5 by default. json only works with serial/single-rank jobs.

• warpx.do_boosted_frame_diagnostic (0 or 1) Whether to use the back-transformed diagnostics
(i.e. diagnostics that perform on-the-fly conversion to the laboratory frame, when running boosted-frame
simulations)

• warpx.lab_data_directory (string) The directory in which to save the lab frame data when using the
back-transformed diagnostics. If not specified, the default is is lab_frame_data.

• warpx.num_snapshots_lab (integer) Only used when warpx.do_boosted_frame_diagnostic
is 1. The number of lab-frame snapshots that will be written.

• warpx.dt_snapshots_lab (float, in seconds) Only used when warpx.
do_boosted_frame_diagnostic is 1. The time interval inbetween the lab-frame snapshots
(where this time interval is expressed in the laboratory frame).

• warpx.dz_snapshots_lab (float, in meters) Only used when warpx.
do_boosted_frame_diagnostic is 1. Distance between the lab-frame snapshots (expressed
in the laboratory frame). dt_snapshots_lab is then computed by dt_snapshots_lab =
dz_snapshots_lab/c. Either dt_snapshots_lab or dz_snapshot_lab is required.

• warpx.do_boosted_frame_fields (0 or 1) Whether to use the back-transformed diagnostics for the
fields.

• warpx.boosted_frame_diag_fields (space-separated list of string) Which fields to dumped in
back-transformed diagnostics. Choices are ‘Ex’, ‘Ey’, Ez’, ‘Bx’, ‘By’, Bz’, ‘jx’, ‘jy’, jz’ and ‘rho’. Exam-
ple: warpx.boosted_frame_diag_fields = Ex Ez By. By default, all fields are dumped.

• warpx.plot_raw_fields (0 or 1) optional (default 0) By default, the fields written in the plot files are
averaged on the nodes. When `warpx.plot_raw_fields is 1, then the raw (i.e. unaveraged) fields
are also saved in the plot files.

• warpx.plot_raw_fields_guards (0 or 1) Only used when warpx.plot_raw_fields is 1.
Whether to include the guard cells in the output of the raw fields.

• warpx.plot_finepatch (0 or 1) Only used when mesh refinement is activated and warpx.
plot_raw_fields is 1. Whether to output the data of the fine patch, in the plot files.

• warpx.plot_crsepatch (0 or 1) Only used when mesh refinement is activated and warpx.
plot_raw_fields is 1. Whether to output the data of the coarse patch, in the plot files.
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• warpx.plot_coarsening_ratio (int ; default: 1) Reduce size of the field output by this ratio in each
dimension. (This is done by averaging the field.) plot_coarsening_ratio should be an integer
divisor of blocking_factor.

• amr.plot_file (string) Root for output file names. Supports sub-directories. Default diags/plotfiles/plt

• warpx.fields_to_plot (list of strings) Fields written to plotfiles. Possible values: Ex Ey Ez Bx By
Bz jx jy jz part_per_cell rho F part_per_grid part_per_proc divE divB. Default is
warpx.fields_to_plot = Ex Ey Ez Bx By Bz jx jy jz part_per_cell.

• slice.dom_lo and slice.dom_hi (2 floats in 2D, 3 floats in 3D; in meters similar to the units of the simulation box.)
The extent of the slice are defined by the co-ordinates of the lower corner (slice.dom_lo) and upper
corner (slice.dom_hi). The slice could be 1D, 2D, or 3D, aligned with the co-ordinate axes and the
first axis of the coordinates is x. For example: if for a 3D simulation, an x-z slice is to be extracted at y =
0.0, then the y-value of slice.dom_lo and slice.dom_hi must be equal to 0.0

• slice.coarsening_ratio (2 integers in 2D, 3 integers in 3D; default 1) The coarsening ratio input
must be greater than 0. Default is 1 in all directions. In the directions that is reduced, i.e., for an x-z
slice in 3D, the reduced y-dimension has a default coarsening ratio equal to 1.

• slice.plot_int (integer) The number of PIC cycles inbetween two consecutive data dumps for the slice.
Use a negative number to disable slice generation and slice data dumping.

2.3.10 Checkpoints and restart

WarpX supports checkpoints/restart via AMReX.

• amr.check_int (integer) The number of iterations between two consecutive checkpoints. Use a negative
number to disable checkpoints.

• amr.restart (string) Name of the checkpoint file to restart from. Returns an error if the folder does not
exist or if it is not properly formatted.

2.4 Profiling the code

2.4.1 Profiling with AMREX’s built-in profiling tools

See this page in the AMReX documentation.

2.4.2 Profiling the code with Intel Advisor on NERSC

Follow these steps:

• Instrument the code during compilation

module swap craype-haswell craype-mic-knl
make -j 16 COMP=intel USE_VTUNE=TRUE

(where the first line is only needed for KNL)

• In your SLURM submission script, use the following lines in order to run the executable. (In addition to setting
the usual OMP environment variables.)
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module load advisor
export ADVIXE_EXPERIMENTAL=roofline
srun -n <n_mpi> -c <n_logical_cores_per_mpi> --cpu_bind=cores advixe-cl -collect
→˓survey -project-dir advisor -trace-mpi -- <warpx_executable> inputs
srun -n <n_mpi> -c <n_logical_cores_per_mpi> --cpu_bind=cores advixe-cl -collect
→˓tripcounts -flop -project-dir advisor -trace-mpi -- <warpx_executable> inputs

where <n_mpi> and <n_logical_cores_per_mpi> should be replaced by the proper values, and
<warpx_executable> should be replaced by the name of the WarpX executable.

• Launch the Intel Advisor GUI

module load advisor
advixe-gui

(Note: this requires to use ssh -XY when connecting to Cori.)

2.5 Parallelization in WarpX

When running a simulation, the domain is split into independent rectangular sub-domains (called grids). This is
the way AMReX, a core component of WarpX, handles parallelization and/or mesh refinement. Furthermore, this
decomposition makes load balancing possible: each MPI rank typically computes a few grids, and a rank with a lot of
work can transfer one or several grids to their neighbors.

A user does not specify this decomposition explicitly. Instead, the user gives hints to the code, and the actual de-
composition is determined at runtime, depending on the parallelization. The main user-defined parameters are amr.
max_grid_size and amr.blocking_factor.

2.5.1 AMReX max_grid_size and blocking_factor

• amr.max_grid_size is the maximum number of points per grid along each direction (default amr.
max_grid_size=32 in 3D).

• amr.blocking_factor: The size of each grid must be divisible by the blocking_factor along all dimen-
sions (default amr.blocking_factor=8). Note that the max_grid_size also has to be divisible by
blocking_factor.

These parameters can have a dramatic impact on the code performance. Each grid in the decomposition is surrounded
by guard cells, thus increasing the amount of data, computation and communication. Hence having a too small
max_grid_size, may ruin the code performance.

On the other hand, a too-large max_grid_size is likely to result in a single grid per MPI rank, thus preventing
load balancing. By setting these two parameters, the user wants to give some flexibility to the code while avoiding
pathological behaviors.

For more information on this decomposition, see the Gridding and Load Balancing page on AMReX documentation.

For specific information on the dynamic load balancer used in WarpX, visit the Load Balancing page on the AMReX
documentation.

The best values for these parameters strongly depends on a number of parameters, among which numerical parameters:

• Algorithms used (Maxwell/spectral field solver, filters, order of the particle shape factor)

• Number of guard cells (that depends on the particle shape factor and the type and order of the Maxwell solver,
the filters used, etc.)
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• Number of particles per cell, and the number of species

and MPI decomposition and computer architecture used for the run:

• GPU or CPU

• Number of OpenMP threads

• Amount of high-bandwidth memory.

Because these parameters put additional contraints on the domain size for a simulation, it can be cumbersome to
calculate the number of cells and the physical size of the computational domain for a given resolution. This Python
script does it automatically.

2.6 Running on specific platforms

2.6.1 Running on Cori KNL at NERSC

The batch script below can be used to run a WarpX simulation on 2 KNL nodes on the supercomputer Cori
at NERSC. Replace descriptions between chevrons <> by relevant values, for instance <job name> could be
laserWakefield.

#!/bin/bash -l

#SBATCH -N 2
#SBATCH -t 01:00:00
#SBATCH -q regular
#SBATCH -C knl
#SBATCH -S 4
#SBATCH -J <job name>
#SBATCH -A <allocation ID>
#SBATCH -e error.txt
#SBATCH -o output.txt

export OMP_PLACES=threads
export OMP_PROC_BIND=spread

# KNLs have 4 hyperthreads max
export CORI_MAX_HYPETHREAD_LEVEL=4
# We use 64 cores out of the 68 available on Cori KNL,
# and leave 4 to the system (see "#SBATCH -S 4" above).
export CORI_NCORES_PER_NODE=64

# Typically use 8 MPI ranks per node without hyperthreading,
# i.e., OMP_NUM_THREADS=8
export WARPX_NMPI_PER_NODE=8
export WARPX_HYPERTHREAD_LEVEL=1

# Compute OMP_NUM_THREADS and the thread count (-c option)
export CORI_NHYPERTHREADS_MAX=$(( ${CORI_MAX_HYPETHREAD_LEVEL} * ${CORI_NCORES_PER_
→˓NODE} ))
export WARPX_NTHREADS_PER_NODE=$(( ${WARPX_HYPERTHREAD_LEVEL} * ${CORI_NCORES_PER_
→˓NODE} ))
export OMP_NUM_THREADS=$(( ${WARPX_NTHREADS_PER_NODE} / ${WARPX_NMPI_PER_NODE} ))
export WARPX_THREAD_COUNT=$(( ${CORI_NHYPERTHREADS_MAX} / ${WARPX_NMPI_PER_NODE} ))

srun --cpu_bind=cores -n $(( ${SLURM_JOB_NUM_NODES} * ${WARPX_NMPI_PER_NODE} )) -c $
→˓{WARPX_THREAD_COUNT} <path/to/executable> <input file> (continues on next page)
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(continued from previous page)

To run a simulation, copy the lines above to a file batch_cori.sh and run

sbatch batch_cori.sh

to submit the job.

For a 3D simulation with a few (1-4) particles per cell using FDTD Maxwell solver on Cori KNL for a well load-
balanced problem (in our case laser wakefield acceleration simulation in a boosted frame in the quasi-linear regime),
the following set of parameters provided good performance:

• amr.max_grid_size=64 and amr.blocking_factor=64 so that the size of each grid is fixed to
64**3 (we are not using load-balancing here).

• 8 MPI ranks per KNL node, with OMP_NUM_THREADS=8 (that is 64 threads per KNL node, i.e. 1 thread per
physical core, and 4 cores left to the system).

• 2 grids per MPI, i.e., 16 grids per KNL node.

2.6.2 Running on Summit at OLCF

The batch script below can be used to run a WarpX simulation on 2 nodes on the supercomputer Summit at
OLCF. Replace descriptions between chevrons <> by relevalt values, for instance <input file> could be
plasma_mirror_inputs. Note that the only option so far is to run with one MPI rank per GPU.

#!/bin/bash
#BSUB -P <allocation ID>
#BSUB -W 00:10
#BSUB -nnodes 2
#BSUB -J WarpX
#BSUB -o WarpXo.%J
#BSUB -e WarpXe.%J

module load pgi
module load cuda

omp=1
export OMP_NUM_THREADS=${omp}

num_nodes=$(( $(printf '%s\n' ${LSB_HOSTS} | sort -u | wc -l) - 1 ))
jsrun -n ${num_nodes} -a 6 -g 6 -c 6 --bind=packed:${omp} <path/to/executable> <input
→˓file> > output.txt

To run a simulation, copy the lines above to a file batch_summit.sh and run

bsub batch_summit.sh

to submit the job.

For a 3D simulation with a few (1-4) particles per cell using FDTD Maxwell solver on Summit for a well load-
balanced problem (in our case laser wakefield acceleration simulation in a boosted frame in the quasi-linear regime),
the following set of parameters provided good performance:

• amr.max_grid_size=256 and amr.blocking_factor=128.

• One MPI rank per GPU (e.g., 6 MPI ranks for the 6 GPUs on each Summit node)

• Two ‘128x128x128‘ grids per GPU, or one ‘128x128x256‘ grid per GPU.
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A batch script with more options regarding profiling on Summit can be found at Summit batch script
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Running WarpX from Python

3.1 How to run a new simulation

After installing WarpX as a Python package, you can use its functionalities in a Python script to run a simulation.

In order to run a new simulation:

• Create a new directory, where the simulation will be run.

• Add a Python script in the directory.

This file contains the numerical and physical parameters that define the situation to be simulated. Example input files
can be found in the section Example input files.

• Run the script with Python:

mpirun -np <n_ranks> python <python_script>

where <n_ranks> is the number of MPI ranks used, and <python_script> is the name of the script.

3.2 Example input files

This section allows you to download Python scripts that correspond to different physical situations.

3.2.1 Beam-driven acceleration

• Without mesh refinement

• With mesh refinement
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3.2.2 Laser-driven acceleration

• Without mesh refinement
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Visualizing the simulation results

WarpX can write data either in plotfile format (AMReX’s native format), or in openPMD format (a common data
format for Particle-In-Cell codes).

Note: This is controlled by the parameters warpx.dump_plotfiles and warpx.dump_openpmd & warpx.
openpmd_backend in the section Input parameters.

This section describes some of the tools available to visualize the data:

4.1 Visualization with yt (for plotfiles)

yt is a Python package that can help in analyzing and visualizing WarpX data (among other data formats). It is
convenient to use yt within a Jupyter notebook.

4.1.1 Installation

From the terminal:

pip install yt jupyter

or with the Anaconda distribution of python (recommended):

conda install -c conda-forge yt

The latest version of yt can be required for advanced options (e.g., rigid injection for particles). To built yt directly
from source, you can use

pip install git+https://github.com/yt-project/yt.git
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4.1.2 Visualizing the data

Once data (“plotfiles”) has been created by the simulation, open a Jupyter notebook from the terminal:

jupyter notebook

Then use the following commands in the first cell of the notebook to import yt and load the first plot file:

import yt
ds = yt.load('./diags/plotfiles/plt00000/')

The list of field data and particle data stored can be seen with:

ds.field_list

For a quick start-up, the most useful commands for post-processing can be found in our Jupyter notebook
Visualization.ipynb

Field data

Field data can be visualized using yt.SlicePlot (see the docstring of this function here)

For instance, in order to plot the field Ex in a slice orthogonal to y (1):

yt.SlicePlot( ds, 1, 'Ex', origin='native' )

Note: yt.SlicePlot creates a 2D plot with the same aspect ratio as the physical size of the simulation box. Sometimes
this can lead to very elongated plots that are difficult to read. You can modify the aspect ratio with the aspect argument
; for instance:

yt.SlicePlot( ds, 1, 'Ex', aspect=1./10 )

Alternatively, the data can be obtained as a numpy array.

For instance, in order to obtain the field jz (on level 0) as a numpy array:

ad0 = ds.covering_grid(level=0, left_edge=ds.domain_left_edge, dims=ds.domain_
→˓dimensions)
jz_array = ad0['jz'].to_ndarray()

Particle data

Particle data can be visualized using yt.ParticlePhasePlot (see the docstring here).

For instance, in order to plot the particles’ x and y positions:

yt.ParticlePhasePlot( ds.all_data(), 'particle_position_x', 'particle_position_y',
→˓'particle_weight')

Alternatively, the data can be obtained as a numpy array.

For instance, in order to obtain the array of position x as a numpy array:
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ad = ds.all_data()
x = ad['particle_position_x'].to_ndarray()

4.1.3 Read back-transformed diagnotics

When running a simulation in a boosted frame, WarpX has the capability to back-transform the simulation results to
the laboratory frame of reference, which is often useful to study the physics. A set of function can be found in the
python file read_raw_data.py.

Alternatively, the main commands can be found in our example jupyter notebook for postprocessing
Visualization.ipynb.

4.1.4 Further information

A lot more information can be obtained from the yt documentation, and the corresponding notebook tutorials here.

4.2 Visualization with Visit (for plotfiles)

Note: The openPMD format can also be visualized with Visit, but requires the installation of a specific plugin: see
this link.

WarpX results can also be visualized by VisIt, an open source visualization and analysis software. VisIT can be
downloaded and installed from https://wci.llnl.gov/simulation/computer-codes/visit.

Assuming that you ran a 2D simulation, here are instructions for making a simple plot from a given plotfile:

• Open the header file: Run VisIt, then select “File” -> “Open file . . . ”, then select the Header file associated with
the plotfile of interest (e.g., plt10000/Header).

• View the data: Select “Add” -> “Pseudocolor” -> “Ez” and select “Draw”. You can select other variable to draw,
such as jx, jy, jz, Ex, . . .

• View the grid structure: Select “Subset” -> “levels”. Then double clik the text “Subset-levels”, enable the
“Wireframe” option, select “Apply”, select “Dismiss”, and then select “Draw”.

• Save the image: Select “File” -> “Set save options”, then customize the image format to your liking, then click
“Save”.

Your image should look similar to the one below

In 3D, you must apply the “Operators” -> “Slicing” -> “ThreeSlice”, You can left-click and drag over the image to
rotate the image to generate image you like.

To make a movie, you must first create a text file named movie.visitwith a list of the Header files for the individual
frames.

The next step is to run VisIt, select “File” -> “Open file . . . ”, then select movie.visit. Create an image to your
liking and press the “play” button on the VCR-like control panel to preview all the frames. To save the movie, choose
“File” -> “Save movie . . . ”, and follow the instructions on the screen.
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4.3 PyQt-based visualization GUI: PICViewer (for both plotfiles and
openPMD)

The toolkit provides various easy-to-use functions for data analysis of Warp/WarpX simulations.

4.3.1 Main features

• 2D/3D openPMD or WarpX data visualization,

• Multi-plot panels (up to 6 rows x 5 columns) which can be controlled independently or synchronously

• Interactive mouse functions (panel selection, image zoom-in, local data selection, etc)

• Animation from a single or multiple panel(s)

• Saving your job configuration and loading it later

• Interface to use VisIt, yt, or mayavi for 3D volume rendering (currently updating)

4.3.2 Required software

• python 2.7 or higher: http://docs.continuum.io/anaconda/install.
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• PyQt5

conda install pyqt

• h5py

• matplotlib

• numpy

• yt

pip install git+https://github.com/yt-project/yt.git --user

• numba

4.3.3 Installation

pip install picviewer

You need to install yt and PySide separately.

You can install from the source for the latest update,

pip install git+https://bitbucket.org/ecp_warpx/picviewer/

4.3.4 To install manually

• Clone this repository

git clone https://bitbucket.org/ecp_warpx/picviewer/

• Switch to the cloned directory with cd picviewer and type python setup.py install

4.3.5 To run

• You can start PICViewer from any directory. Type picviewer in the command line. Select a folder where your
data files are located.

• You can directly open your data. Move on to a folder where your data files ae located (cd [your data folder])
and type picviewer in the command line.

4.4 Visualization with openPMD-viewer (for openPMD data)

openPMD-viewer is an open-source Python package to access openPMD data.

It allows to: - Quickly browse through the data, with a GUI-type interface in the Jupyter notebook - Have access to the
data numpy array, for more detailed analysis
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4.4.1 Installation

openPMD-viewer can be installed via conda or pip:

conda install -c rlehe openpmd_viewer

pip install openPMD-viewer

4.4.2 Usage

openPMD-viewer can be used either in simple Python scripts, or in a Jupyter notebook. In both cases, you can import
openPMD-viewer, and load the data with the following commands:

from opmd_viewer import OpenPMDTimeSeries
ts = OpenPMDTimeSeries('./diags/hdf5')

Note: If you are using the Jupyter notebook, then you can start a pre-filled notebook, which already contains the
above lines, by typing in a terminal:

openPMD_notebook

When using the Jupyter notebook, you can quickly browse through the data by using the command:

ts.slider()

You can also access the particle and field data as numpy arrays with the methods ts.get_field and ts.
get_particle. See the openPMD-viewer tutorials here for more info.

4.5 Advanced yt visualization, for developers (for plotfiles)

This sections contains yt commands for advanced users. The Particle-In-Cell methods uses a staggered grid (see
The electromagnetic Particle-In-Cell method), so that the x, y, and z components of the electric and magnetic fields
are all defined at different locations in space. Regular output (see the Visualization with yt (for plotfiles) page, or the
notebook at WarpX/Tools/Visualization.ipynb for an example) returns cell-centered data for convenience,
which involves an additional operation. It is sometimes useful to access the raw data directly. Furthermore, the
WarpX implementation for mesh refinement contains a number of grids for each level (coarse, fine and auxilary, see
../theory/warpx_theory for more details), and it is sometimes useful to access each of them (regular output return the
auxiliary grid only). This page provides information to read raw data of all grids.

4.5.1 Dump additional data

In order to dump additional data in WarpX (mostly for debugging purpose), run the simulation with parameters

warpx.plot_raw_fields = 1
warpx.plot_finepatch = 1
warpx.plot_crsepatch = 1
warpx.plot_dive = 1
warpx.plot_rho = 1

see Input parameters for more information on these parameters.
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4.5.2 Read raw data

Meta-data relevant to this topic (number and locations of grids in the simulation) are accessed to with

import yt
# get yt dataset
ds = yt.load( './plotfiles/plt00004' )
# Index of data in the plotfile
ds_index = ds.index
# Print the number of grids in the simulation
ds_index.grids.shape
# Left and right physical boundary of each grid
ds_index.grid_left_edge
ds_index.grid_right_edge
# List available fields
ds.field_list

When warpx.plot_raw_fields=1 and warpx.plot_finepatch=1, here are some useful commands to
access properties of a grid and the Ex field on the fine patch:

# store grid number 2 into my_grid
my_grid = ds.index.grids[2]
# Get left and right edges of my_grid
my_grid.LeftEdge
my_grid.RightEdge
# Get Level of my_grid
my_grid.Level
# left edge of the grid, in number of points
my_grid.start_index

Return the Ex field on the fine patch of grid my_grid:

my_field = my_grid['raw', 'Ex_fp'].squeeze().v

For a 2D plotfile, my_field has shape (nx,nz,2). The last component stands for the two values on the edges of
each cell for the electric field, due to field staggering. Numpy function squeeze removes empty components. While
yt arrays are unit-aware, it is sometimes useful to extract the data into unitless numpy arrays. This is achieved with .v.
In the case of Ex_fp, the staggering is on direction x, so that my_field[:,:-1,1] == my_field[:,1:,0].

All combinations of the fields (E or B), the component (x, y or z) and the grid (_fp for fine, _cp for coarse and
_aux for auxiliary) can be accessed in this way, i.e., my_grid['raw', 'Ey_aux'] or my_grid['raw',
'Bz_cp'] are valid queries.

4.6 Out-of-the-box plotting script

A ready-to-use python script for plotting simulation results is available at plot_parallel.py. Feel free to use it
out-of-the-box or to modify it to suit your needs.

4.6.1 Dependencies

Most of its dependencies are standard Python packages, that come with a default Anaconda installation or can be
installed with pip or conda: os, matplotlib, sys, argparse, matplotlib, scipy.

Additional dependencies are yt >= 3.5 ( or yt >= 3.6 if you are using rigid injection, see section Visualization
with yt (for plotfiles) on how to install yt), and mpi4py.
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4.6.2 Run serial

Executing the script with

python plot_parallel.py

will loop through plotfiles named plt????? (e.g., plt00000, plt00100 etc.) and save one image per plotfile.
For a 2D simulation, a 2D colormap of the Ez field is plotted by default, with 1/20 of particles of each species (with
different colors). For a 3D simulation, a 2D colormap of the central slices in y is plotted, and particles are handled the
same way.

The script reads command-line options (which field and particle species, rendering with yt or matplotlib, etc.). For the
full list of options, run

python plot_parallel.py --help

In particular, option --plot_Ey_max_evolution shows you how to plot the evolution of a scalar quantity over
time (by default, the max of the Ey field). Feel free to modify it to plot the evolution of other quantities.

4.6.3 Run parallel

To execute the script in parallel, you can run for instance

mpirun -np 4 python plot_parallel.py --parallel

In this case, MPI ranks will share the plotfiles to process as evenly as possible. Note that each plotfile is still processed
in serial. When option --plot_Ey_max_evolution is on, the scalar quantity is gathered to rank 0, and rank 0
plots the image.

If all dependencies are satisfied, the script can be used on Summit or Cori. For instance, the following batch script
illustrates how to submit a post-processing batch job on Cori haswell with some options:

#!/bin/bash
#SBATCH --job-name=postproc
#SBATCH --time=00:20:00
#SBATCH -C haswell
#SBATCH -N 8
#SBATCH -q regular
#SBATCH -e postproce.txt
#SBATCH -o postproco.txt
#SBATCH --mail-type=end
#SBATCH --account=m2852

export OMP_NUM_THREADS=1

# Requires python3 and yt > 3.5
srun -n 32 -c 16 python plot_parallel.py --path <path/to/plotfiles> --plotlib=yt --
→˓parallel

In addition, WarpX also has In-Situ Visualization capabilities (i.e. visualizing the data directly from the simulation,
without dumping data files to disk).
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4.7 In situ Visualization with SENSEI

SENSEI is a light weight framework for in situ data analysis. SENSEI’s data model and API provide uniform access
to and run time selection of a diverse set of visualization and analysis back ends including VisIt Libsim, ParaView
Catalyst, VTK-m, Ascent, ADIOS, Yt, and Python.

SENSEI uses an XML file to select and configure one or more back ends at run time. Run time selection of the back
end via XML means one user can access Catalyst, another Libsim, yet another Python with no changes to the code.

4.7.1 System Architecture

Fig. 4.1: SENSEI’s in situ architecture enables use of a diverse of back ends which can be selected at run time via an
XML configuration file

The three major architectural components in SENSEI are data adaptors which present simulation data in SENSEI’s
data model, analysis adaptors which present the back end data consumers to the simulation, and bridge code from
which the simulation manages adaptors and periodically pushes data through the system. SENSEI comes equipped
with a number of analysis adaptors enabling use of popular analysis and visualization libraries such as VisIt Libsim,
ParaView Catalyst, Python, and ADIOS to name a few. AMReX contains SENSEI data adaptors and bridge code
making it easy to use in AMReX based simulation codes.

SENSEI provides a configurable analysis adaptor which uses an XML file to select and configure one or more back
ends at run time. Run time selection of the back end via XML means one user can access Catalyst, another Libsim,
yet another Python with no changes to the code. This is depicted in figure Fig. 4.1. On the left side of the figure
AMReX produces data, the bridge code pushes the data through the configurable analysis adaptor to the back end that
was selected at run time.
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4.7.2 Compiling with GNU Make

For codes making use of AMReX’s build system add the following variable to the code’s main GNUmakefile.

USE_SENSEI_INSITU = TRUE

When set, AMReX’s make files will query environment variables for the lists of compiler and linker flags, include
directories, and link libraries. These lists can be quite elaborate when using more sophisticated back ends, and are
best set automatically using the sensei_config command line tool that should be installed with SENSEI. Prior to
invoking make use the following command to set these variables:

source sensei_config

Typically, the sensei_config tool is in the users PATH after loading the desired SENSEI module. After configur-
ing the build environment with sensei_config, proceed as usual.

make -j4 -f GNUmakefile

4.7.3 ParmParse Configuration

Once an AMReX code has been compiled with SENSEI features enabled, it will need to be enabled and configured at
runtime. This is done using ParmParse input file. The supported parameters are described in the following table.

parameter description de-
fault

insitu.int turns in situ processing on or off and controls how often data is processed. 0
insitu.start controls when in situ processing starts. 0
insitu.config points to the SENSEI XML file which selects and configures the desired back

end.
insitu.
pin_mesh

when 1 lower left corner of the mesh is pinned to 0.,0.,0. 0

A typical use case is to enabled SENSEI by setting insitu.int to be greater than 1, and insitu.config to
point SENSEI to an XML file that selects and configures the desired back end.

insitu.int = 2
insitu.config = render_iso_catalyst.xml

4.7.4 Back-end Selection and Configuration

The back end is selected and configured at run time using the SENSEI XML file. The XML sets parameters specific
to SENSEI and to the chosen back end. Many of the back ends have sophisticated configuration mechanisms which
SENSEI makes use of. For example the following XML configuration was used on NERSC’s Cori with WarpX to
render 10 iso surfaces, shown in figure Fig. 4.2, using VisIt Libsim.

<sensei>
<analysis type="libsim" frequency="1" mode="batch"
session="beam_j_pin.session"
image-filename="beam_j_pin_%ts" image-width="1200" image-height="900"
image-format="png" enabled="1"/>

</sensei>
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The session attribute names a session file that contains VisIt specific runtime configuration. The session file is gen-
erated using VisIt GUI on a representative dataset. Usually this data set is generated in a low resolution run of the
desired simulation.

Fig. 4.2: Rendering of 10 3D iso-surfaces of j using VisIt libsim. The upper left quadrant has been clipped away to
reveal innner structure.

The same run and visualization was repeated using ParaView Catalyst, shown in figure Fig. 4.3, by providing the
following XML configuration.

<sensei>
<analysis type="catalyst" pipeline="pythonscript"
filename="beam_j.py" enabled="1" />

</sensei>

Here the filename attribute is used to pass Catalyst a Catalyst specific configuration that was generated using the
ParaView GUI on a representative dataset.

The renderings in these runs were configured using a representative dataset which was obtained by running the simu-
lation for a few time steps at a lower spatial resolution. When using VisIt Libsim the following XML configures the
VTK writer to write the simulation data in VTK format. At the end of the run a .visit file that VisIt can open will
be generated.

<sensei>
<analysis type="PosthocIO" mode="visit" writer="xml"

(continues on next page)
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Fig. 4.3: Rendering of 10 3D iso-surfaces of j using ParaView Catalyst. The upper left quadrant has been clipped away
to reveal innner structure.
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(continued from previous page)

ghost_array_name="avtGhostZones" output_dir="./"
enabled="1">

</analysis>
</sensei>

When using ParaView Catalyst the following XML configures the VTK writer to write the simulation data in VTK
format. At the end of the run a .pvd file that ParaView can open will be generated.

<sensei>
<analysis type="PosthocIO" mode="paraview" writer="xml"

ghost_array_name="vtkGhostType" output_dir="./"
enabled="1">

</analysis>
</sensei>

4.7.5 Obtaining SENSEI

SENSEI is hosted on Kitware’s Gitlab site at https://gitlab.kitware.com/sensei/sensei It’s best to checkout the latest
release rather than working on the master branch.

To ease the burden of wrangling back end installs SENSEI provides two platforms with all dependencies pre-installed,
a VirtualBox VM, and a NERSC Cori deployment. New users are encouraged to experiment with one of these.

SENSEI VM

The SENSEI VM comes with all of SENSEI’s dependencies and the major back ends such as VisIt and ParaView
installed. The VM is the easiest way to test things out. It also can be used to see how installs were done and the
environment configured.

The SENSEI VM can be downloaded here.

The SENSEI VM uses modules to manage the build and run environment. Load the SENSEI modulefile for the
back-end you wish to use. The following table describes the available installs and which back-ends are supported in
each.

modulefile back-end(s)
sensei/2.1.1-catalyst-shared ParaView Catalyst, ADIOS, Python
sensei/2.1.1-libsim-shared VisIt Libsim, ADIOS, Python
sensei/2.1.1-vtk-shared VTK-m, ADIOS, Python

NERSC Cori

SENSEI is deployed at NERSC on Cori. The NERSC deployment includes the major back ends such as ADIOS,
ParaView Catalyst, VisIt Libsim, and Python.

The SENSEI installs uses modules to manage the build and run environment. Load the SENSEI modulefile for the
back-end you wish to use. The following table describes the available installs and which back-ends are supported in
each.
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modulefile back-end(s)
sensei/2.1.0-catalyst-shared ParaView Catalyst, ADIOS, Python
sensei/2.1.0-libsim-shared VisIt Libsim, ADIOS, Python
sensei/2.1.0-vtk-shared VTK-m, ADIOS, Python

To access the SENSEI modulefiles on cori first add the SENSEI install to the search path:

module use /usr/common/software/sensei/modulefiles

4.7.6 3D LPA Example

This section shows an example of using SENSEI and three different back ends on a 3D LPA simulation. The instruc-
tions are specifically for NERSC cori, but also work with the SENSEI VM. The primary difference between working
through the examples on cori or the VM are that different versions of software are installed.

Rendering with VisIt Libsim

First, log into cori and clone the git repo’s.

cd $SCRATCH
mkdir warpx
cd warpx/
git clone --branch dev https://github.com/ECP-WarpX/WarpX.git WarpX-libsim
git clone --branch development https://github.com/AMReX-Codes/amrex
git clone --branch master https://bitbucket.org/berkeleylab/picsar.git
cd WarpX-libsim
vim GNUmakefile

Next, edit the makefile to turn the SENSEI features on.

USE_SENSEI_INSITU=TRUE

Then, load the SENSEI VisIt module, bring SENSEI’s build requirements into the environment, and compile WarpX.

module use /usr/common/software/sensei/modulefiles/
module load sensei/2.1.0-libsim-shared
source sensei_config
make -j8

Download the WarpX input deck, SENSEI XML configuration and and VisIt session files. The inputs file configures
WarpX, the xml file configures SENSEI, and the session file configures VisIt. The inputs and xml files are written by
hand, while the session file is generated in VisIt gui on a representative data set.

wget https://data.kitware.com/api/v1/item/5c05d48e8d777f2179d22f20/download -O inputs.
→˓3d
wget https://data.kitware.com/api/v1/item/5c05d4588d777f2179d22f16/download -O beam_j_
→˓pin.xml
wget https://data.kitware.com/api/v1/item/5c05d4588d777f2179d22f0e/download -O beam_j_
→˓pin.session

To run the demo, submit an interactive job to the batch queue, and launch WarpX.
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salloc -C haswell -N 1 -t 00:30:00 -q debug
./Bin/main3d.gnu.TPROF.MPI.OMP.ex inputs.3d

Rendering with ParaView Catalyst

First, log into cori and clone the git repo’s.

cd $SCRATCH
mkdir warpx
cd warpx/
git clone --branch dev https://github.com/ECP-WarpX/WarpX.git WarpX-catalyst
git clone --branch development https://github.com/AMReX-Codes/amrex
git clone --branch master https://bitbucket.org/berkeleylab/picsar.git
cd WarpX-catalyst
vim GNUmakefile

Next, edit the makefile to turn the SENSEI features on.

USE_SENSEI_INSITU=TRUE

Then, load the SENSEI ParaView module, bring SENSEI’s build requirements into the environment, and compile
WarpX.

module use /usr/common/software/sensei/modulefiles/
module load sensei/2.1.0-catalyst-shared
source sensei_config
make -j8

Download the WarpX input deck, SENSEI XML configuration and and ParaView session files. The inputs file config-
ures WarpX, the xml file configures SENSEI, and the session file configures ParaView. The inputs and xml files are
written by hand, while the session file is generated in ParaView gui on a representative data set.

wget https://data.kitware.com/api/v1/item/5c05b3fd8d777f2179d2067d/download -O inputs.
→˓3d
wget https://data.kitware.com/api/v1/item/5c05b3fd8d777f2179d20675/download -O beam_j.
→˓xml
wget https://data.kitware.com/api/v1/item/5c05b3fc8d777f2179d2066d/download -O beam_j.
→˓py

To run the demo, submit an interactive job to the batch queue, and launch WarpX.

salloc -C haswell -N 1 -t 00:30:00 -q debug
./Bin/main3d.gnu.TPROF.MPI.OMP.ex inputs.3d

In situ Calculation with Python

SENSEI’s Python back-end loads a user provided script file containing callbacks for Initialize, Execute, and
Finalize phases of the run. During the execute phase the simulation pushes data through SENSEI. SENSEI for-
wards this data to the user provided Python function. SENSEI’s MPI communicator is made available to the user’s
function via a global variable comm.

Here is a template for the user provided Python code.
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# YOUR IMPORTS HERE

# SET DEFAULTS OF GLOBAL VARIABLES THAT INFLUENCE RUNTIME BEHAVIOR HERE

def Initialize():
""" Initialization code """
# YOUR CODE HERE
return

def Execute(dataAdaptor):
""" Use sensei::DataAdaptor instance passed in

dataAdaptor to access and process simulation data """
# YOUR CODE HERE
return

def Finalize():
""" Finalization code """
# YOUR CODE HERE
return

Initialize and Finalize are optional and will be called if they are provided. Execute is required. SENSEI’s
DataAdaptor API is used to obtain data and metadata from the simulation. Data is through VTK Object’s. In WarpX
the vtkOverlappingAMR VTK dataset is used.

The following script shows a simple integration of a scalar quantity over the valid cells of the mesh. The result is saved
in a CSV format.

import numpy as np, matplotlib.pyplot as plt
from vtk.util.numpy_support import *
from vtk import vtkDataObject
import sys

# default values of control parameters
array = ''
out_file = ''

def Initialize():
# rank zero writes the result
if comm.Get_rank() == 0:
fn = out_file if out_file else 'integrate_%s.csv'%(array)
f = open(fn, 'w')
f.write('# time, %s\n'%(array))
f.close()

return

def Execute(adaptor):
# get the mesh and arrays we need
dobj = adaptor.GetMesh('mesh', False)
adaptor.AddArray(dobj, 'mesh', vtkDataObject.CELL, array)
adaptor.AddGhostCellsArray(dobj, 'mesh')
time = adaptor.GetDataTime()

# integrate over the local blocks
varint = 0.
it = dobj.NewIterator()
while not it.IsDoneWithTraversal():
# get the local data block and its props

(continues on next page)
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(continued from previous page)

blk = it.GetCurrentDataObject()

# get the array container
atts = blk.GetCellData()

# get the data array
var = vtk_to_numpy(atts.GetArray(array))

# get ghost cell mask
ghost = vtk_to_numpy(atts.GetArray('vtkGhostType'))
ii = np.where(ghost == 0)[0]

# integrate over valid cells
varint = np.sum(var[ii])*np.prod(blk.GetSpacing())

it.GoToNextItem()

# reduce integral to rank 0
varint = comm.reduce(varint, root=0, op=MPI.SUM)

# rank zero writes the result
if comm.Get_rank() == 0:
fn = out_file if out_file else 'integrate_%s.csv'%(array)
f = open(fn, 'a+')
f.write('%s, %s\n'%(time, varint))
f.close()

return

The following XML configures SENSEI’s Python back-end.

<sensei>
<analysis type="python" script_file="./integrate.py" enabled="1">
<initialize_source>

array='rho'
out_file='rho.csv'

</initialize_source>
</analysis>

</sensei>

The script_file attribute sets the file path to load the user’s Python code from, and the initialize_source
element contains Python code that controls runtime behavior specific to each user provided script.

4.8 In situ Visualization with Ascent

Ascent is a system designed to meet the in-situ visualization and analysis needs of simulation code teams running
multi-physics calculations on many-core HPC architectures. It provides rendering runtimes that can leverage many-
core CPUs and GPUs to render images of simulation meshes.

4.8.1 Compiling with GNU Make

After building and installing Ascent according to the instructions at Building Ascent, you can enable it in WarpX by
changing the line
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USE_ASCENT_INSITU = FALSE

in GNUmakefile to

USE_ASCENT_INSITU = TRUE

Furthermore, you must ensure that either the ASCENT_HOME shell environment variable contains the directory where
Ascent is installed or you must specify this location when invoking make, i.e.,

make -j 8 ASCENT_HOME = /path/to/ascent/install

4.8.2 ParmParse Configuration

Once an AMReX code has been compiled with Ascent enabled, it will need to be enabled and configured at runtime.
This is done using ParmParse input file. The supported parameters are described in the following table.

parameter description default
insitu.int turns in situ processing on or off and controls how often data is processed. 0
insitu.start controls when in situ processing starts. 0

A typical use case is setting insitu.int to a value of one or greater and insitu.start to the first time step
where in situ analyswhere in situ analysis should be performed.

4.8.3 Visualization/Analysis Pipeline Configuration

Ascent uses the file ascent_actions.json to configure analysis and visualization pipelines. For example, the
following ascent_actions.json file extracts an isosurface of the field Ex for 15 levels and saves the resulting
images to levels_<nnnn>.png. Ascent Actions provides an overview over all available analysis and visualization
actions.

[
{
"action": "add_pipelines",
"pipelines":
{

"p1":
{

"f1":
{
"type" : "contour",
"params" :
{

"field" : "Ex",
"levels": 15

}
}

}
}

},
{
"action": "add_scenes",
"scenes":
{

(continues on next page)
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(continued from previous page)

"s1":
{

"image_prefix": "levels_%04d",
"plots":
{
"p1":
{

"type": "pseudocolor",
"pipeline": "p1",
"field": "Ex"

}
}

}
}

},

{
"action": "execute"

},

{
"action": "reset"

}
]

If you like the 3D rendering of laser wakefield acceleration on the WarpX documentation frontpage (which is also the
avatar of the ECP-WarpX organization), you can find the serial analysis script video_yt.py as well as a parallel
analysis script video_yt.py used to make a similar rendering for a beam-driven wakefield simulation, running
parallel.
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Theoretical background

This page contains information on the algorithms that are used in WarpX.

Topics:

5.1 Introduction

Computer simulations have had a profound impact on the design and understanding of past and present plasma ac-
celeration experiments (Tsung et al. 2006; Geddes et al. 2008; C. Geddes et al. 2009; Huang et al. 2009), with
accurate modeling of wake formation, electron self-trapping and acceleration requiring fully kinetic methods (usu-
ally Particle-In-Cell) using large computational resources due to the wide range of space and time scales involved.
Numerical modeling complements and guides the design and analysis of advanced accelerators, and can reduce de-
velopment costs significantly. Despite the major recent experimental successes(Leemans et al. 2014; Blumenfeld et
al. 2007; Bulanov S V and Wilkens J J and Esirkepov T Zh and Korn G and Kraft G and Kraft S D and Molls M
and Khoroshkov V S 2014; Steinke et al. 2016), the various advanced acceleration concepts need significant progress
to fulfill their potential. To this end, large-scale simulations will continue to be a key component toward reaching a
detailed understanding of the complex interrelated physics phenomena at play.

For such simulations, the most popular algorithm is the Particle-In-Cell (or PIC) technique, which represents elec-
tromagnetic fields on a grid and particles by a sample of macroparticles. However, these simulations are extremely
computationally intensive, due to the need to resolve the evolution of a driver (laser or particle beam) and an acceler-
ated beam into a structure that is orders of magnitude longer and wider than the accelerated beam. Various techniques
or reduced models have been developed to allow multidimensional simulations at manageable computational costs:
quasistatic approximation (Sprangle, Esarey, and Ting 1990; Antonsen and Mora 1992; Krall et al. 1993; Mora and
Antonsen 1997; Huang et al. 2006), ponderomotive guiding center (PGC) models (Antonsen and Mora 1992; Krall
et al. 1993; Huang et al. 2006; Benedetti et al. 2010; Cowan et al. 2011), simulation in an optimal Lorentz boosted
frame (Vay 2007; Bruhwiler et al. 2009; Vay et al. 2009, 2010; Vay et al. 2009; Martins et al. 2009; Martins, Fonseca,
Lu, et al. 2010; Martins, Fonseca, Vieira, et al. 2010; S. F. Martins et al. 2010; J L Vay et al. 2011; J. Vay et al.
2011; J -L. Vay et al. 2011; Yu et al. 2016), expanding the fields into a truncated series of azimuthal modes (Godfrey
1985; Lifschitz et al. 2009; Davidson et al. 2015; Lehe et al. 2016; Andriyash, Lehe, and Lifschitz 2016), fluid ap-
proximation (Krall et al. 1993; Shadwick, Schroeder, and Esarey 2009; Benedetti et al. 2010) and scaled parameters
(Cormier-Michel et al. 2009; C. G. R. Geddes et al. 2009).
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Fig. 5.1: [fig:Plasma_acceleration_sim] Plasma laser-driven (top) and charged-particles-driven (bottom) acceleration
(rendering from 3-D Particle-In-Cell simulations). A laser beam (red and blue disks in top picture) or a charged particle
beam (red dots in bottom picture) propagating (from left to right) through an under-dense plasma (not represented)
displaces electrons, creating a plasma wakefield that supports very high electric fields (pale blue and yellow). These
electric fields, which can be orders of magnitude larger than with conventional techniques, can be used to accelerate a
short charged particle beam (white) to high-energy over a very short distance.
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al. 2016. “Enabling Lorentz boosted frame particle-in-cell simulations of laser wakefield acceleration in quasi-3D
geometry.” Journal of Computational Physics. https://doi.org/10.1016/j.jcp.2016.04.014.

5.2 The electromagnetic Particle-In-Cell method

Fig. 5.2: [fig:PIC] The Particle-In-Cell (PIC) method follows the evolution of a collection of charged macro-particles
(positively charged in blue on the left plot, negatively charged in red) that evolve self-consistently with their elec-
tromagnetic (or electrostatic) fields. The core PIC algorithm involves four operations at each time step: 1) evolve
the velocity and position of the particles using the Newton-Lorentz equations, 2) deposit the charge and/or current
densities through interpolation from the particles distributions onto the grid, 3) evolve Maxwell’s wave equations (for
electromagnetic) or solve Poisson’s equation (for electrostatic) on the grid, 4) interpolate the fields from the grid onto
the particles for the next particle push. Additional “add-ons” operations are inserted between these core operations to
account for additional physics (e.g. absorption/emission of particles, addition of external forces to account for acceler-
ator focusing or accelerating component) or numerical effects (e.g. smoothing/filtering of the charge/current densities
and/or fields on the grid).

In the electromagnetic Particle-In-Cell method (Birdsall and Langdon 1991), the electromagnetic fields are solved on
a grid, usually using Maxwell’s equations

𝜕B

𝜕𝑡
= −∇×E

𝜕E

𝜕𝑡
= ∇×B− J

∇ ·E = 𝜌

∇ ·B = 0

given here in natural units (𝜖0 = 𝜇0 = 𝑐 = 1), where 𝑡 is time, E and B are the electric and magnetic field components,
and 𝜌 and J are the charge and current densities. The charged particles are advanced in time using the Newton-Lorentz
equations of motion

𝑑x

𝑑𝑡
=v,

𝑑 (𝛾v)

𝑑𝑡
=
𝑞

𝑚
(E + v ×B) ,

where 𝑚, 𝑞, x, v and 𝛾 = 1/
√

1 − 𝑣2 are respectively the mass, charge, position, velocity and relativistic factor of
the particle given in natural units (𝑐 = 1). The charge and current densities are interpolated on the grid from the
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particles’ positions and velocities, while the electric and magnetic field components are interpolated from the grid to
the particles’ positions for the velocity update.

5.2.1 Particle push

A centered finite-difference discretization of the Newton-Lorentz equations of motion is given by

x𝑖+1 − x𝑖

∆𝑡
=v𝑖+1/2,

𝛾𝑖+1/2v𝑖+1/2 − 𝛾𝑖−1/2v𝑖−1/2

∆𝑡
=
𝑞

𝑚

(︀
E𝑖 + v̄𝑖 ×B𝑖

)︀
.

In order to close the system, v̄𝑖 must be expressed as a function of the other quantities. The two implementations that
have become the most popular are presented below.

Boris relativistic velocity rotation

The solution proposed by Boris (Boris 1970) is given by

v̄𝑖 =
𝛾𝑖+1/2v𝑖+1/2 + 𝛾𝑖−1/2v𝑖−1/2

2𝛾𝑖
.

where 𝛾𝑖 is defined by 𝛾𝑖 ≡ (𝛾𝑖+1/2 + 𝛾𝑖−1/2)/2.

The system ([Eq:leapfrog_v],[Eq:boris_v]) is solved very efficiently following Boris’ method, where the electric field
push is decoupled from the magnetic push. Setting u = 𝛾v, the velocity is updated using the following sequence:

u− =u𝑖−1/2 + (𝑞∆𝑡/2𝑚)E𝑖

u′ =u− + u− × t

u+ =u− + u′ × 2t/(1 + 𝑡2)

u𝑖+1/2 =u+ + (𝑞∆𝑡/2𝑚)E𝑖

where t = (𝑞∆𝑡/2𝑚)B𝑖/𝛾𝑖 and where 𝛾𝑖 can be calculated as 𝛾𝑖 =
√︀

1 + (u−/𝑐)2.

The Boris implementation is second-order accurate, time-reversible and fast. Its implementation is very widespread
and used in the vast majority of PIC codes.

Vay Lorentz-invariant formulation

It was shown in (Vay 2008) that the Boris formulation is not Lorentz invariant and can lead to significant errors in the
treatment of relativistic dynamics. A Lorentz invariant formulation is obtained by considering the following velocity
average

v̄𝑖 =
v𝑖+1/2 + v𝑖−1/2

2
,

This gives a system that is solvable analytically (see (Vay 2008) for a detailed derivation), giving the following velocity
update:

u* =u𝑖−1/2 +
𝑞∆𝑡

𝑚

(︂
E𝑖 +

v𝑖−1/2

2
×B𝑖

)︂
,

u𝑖+1/2 = [u* + (u* · t) t + u* × t] /
(︀
1 + 𝑡2

)︀
,
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where t = 𝜏/𝛾𝑖+1/2, 𝜏 = (𝑞∆𝑡/2𝑚)B𝑖, 𝛾𝑖+1/2 =
√︁
𝜎 +

√︀
𝜎2 + (𝜏2 + 𝑤2), 𝑤 = u* · 𝜏 , 𝜎 =

(︀
𝛾′2 − 𝜏2

)︀
/2

and 𝛾′ =
√︀

1 + (u*/𝑐)2. This Lorentz invariant formulation is particularly well suited for the modeling of ultra-
relativistic charged particle beams, where the accurate account of the cancellation of the self-generated electric and
magnetic fields is essential, as shown in (Vay 2008).

5.2.2 Field solve

Various methods are available for solving Maxwell’s equations on a grid, based on finite-differences, finite-volume,
finite-element, spectral, or other discretization techniques that apply most commonly on single structured or un-
structured meshes and less commonly on multiblock multiresolution grid structures. In this chapter, we summarize
the widespread second order finite-difference time-domain (FDTD) algorithm, its extension to non-standard finite-
differences as well as the pseudo-spectral analytical time-domain (PSATD) and pseudo-spectral time-domain (PSTD)
algorithms. Extension to multiresolution (or mesh refinement) PIC is described in, e.g. (Vay et al. 2012; Vay, Adam,
and Heron 2004).

Finite-Difference Time-Domain (FDTD)

The most popular algorithm for electromagnetic PIC codes is the Finite-Difference Time-Domain (or FDTD) solver

𝐷𝑡B = −∇×E

𝐷𝑡E = ∇×B− J

[∇ ·E = 𝜌]

[∇ ·B = 0] .

Fig. 5.3: [fig:yee_grid](left) Layout of field components on the staggered “Yee” grid. Current densities and electric
fields are defined on the edges of the cells and magnetic fields on the faces. (right) Time integration using a second-
order finite-difference “leapfrog” integrator.

The differential operator is defined as ∇ = 𝐷𝑥x̂ + 𝐷𝑦ŷ + 𝐷𝑧 ẑ and the finite-difference operators in time and space
are defined respectively as

𝐷𝑡𝐺|𝑛𝑖,𝑗,𝑘 =
(︁
𝐺|𝑛+1/2

𝑖,𝑗,𝑘 −𝐺|𝑛−1/2
𝑖,𝑗,𝑘

)︁
/∆𝑡

and 𝐷𝑥𝐺|𝑛𝑖,𝑗,𝑘 =
(︁
𝐺|𝑛𝑖+1/2,𝑗,𝑘 −𝐺|𝑛𝑖−1/2,𝑗,𝑘

)︁
/∆𝑥, where ∆𝑡 and ∆𝑥 are respectively the time step and the grid cell

size along 𝑥, 𝑛 is the time index and 𝑖, 𝑗 and 𝑘 are the spatial indices along 𝑥, 𝑦 and 𝑧 respectively. The difference
operators along 𝑦 and 𝑧 are obtained by circular permutation. The equations in brackets are given for completeness,
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as they are often not actually solved, thanks to the usage of a so-called charge conserving algorithm, as explained
below. As shown in Figure [fig:yee_grid], the quantities are given on a staggered (or “Yee”) grid (Yee 1966), where
the electric field components are located between nodes and the magnetic field components are located in the center of
the cell faces. Knowing the current densities at half-integer steps, the electric field components are updated alternately
with the magnetic field components at integer and half-integer steps respectively.

Non-Standard Finite-Difference Time-Domain (NSFDTD)

In (Cole 1997, 2002), Cole introduced an implementation of the source-free Maxwell’s wave equations for narrow-
band applications based on non-standard finite-differences (NSFD). In (Karkkainen et al. 2006), Karkkainen et al.
adapted it for wideband applications. At the Courant limit for the time step and for a given set of parameters, the
stencil proposed in (Karkkainen et al. 2006) has no numerical dispersion along the principal axes, provided that the
cell size is the same along each dimension (i.e. cubic cells in 3D). The “Cole-Karkkainnen” (or CK) solver uses the
non-standard finite difference formulation (based on extended stencils) of the Maxwell-Ampere equation and can be
implemented as follows (Vay et al. 2011):

𝐷𝑡B = −∇* ×E

𝐷𝑡E = ∇×B− J

[∇ ·E = 𝜌]

[∇* ·B = 0]

Eq. [Eq:Gauss] and [Eq:divb] are not being solved explicitly but verified via appropriate initial conditions and
current deposition procedure. The NSFD differential operators is given by ∇* = 𝐷*

𝑥x̂ + 𝐷*
𝑦ŷ + 𝐷*

𝑧 ẑ where
𝐷*

𝑥 =
(︀
𝛼+ 𝛽𝑆1

𝑥 + 𝜉𝑆2
𝑥

)︀
𝐷𝑥 with 𝑆1

𝑥𝐺|𝑛𝑖,𝑗,𝑘 = 𝐺|𝑛𝑖,𝑗+1,𝑘+𝐺|𝑛𝑖,𝑗−1,𝑘+𝐺|𝑛𝑖,𝑗,𝑘+1+𝐺|𝑛𝑖,𝑗,𝑘−1, 𝑆2
𝑥𝐺|𝑛𝑖,𝑗,𝑘 = 𝐺|𝑛𝑖,𝑗+1,𝑘+1+

𝐺|𝑛𝑖,𝑗−1,𝑘+1 +𝐺|𝑛𝑖,𝑗+1,𝑘−1 +𝐺|𝑛𝑖,𝑗−1,𝑘−1. 𝐺 is a sample vector component, while 𝛼, 𝛽 and 𝜉 are constant scalars sat-
isfying 𝛼+ 4𝛽 + 4𝜉 = 1. As with the FDTD algorithm, the quantities with half-integer are located between the nodes
(electric field components) or in the center of the cell faces (magnetic field components). The operators along 𝑦 and
𝑧, i.e. 𝐷𝑦 , 𝐷𝑧 , 𝐷*

𝑦 , 𝐷*
𝑧 , 𝑆1

𝑦 , 𝑆1
𝑧 , 𝑆2

𝑦 , and 𝑆2
𝑧 , are obtained by circular permutation of the indices.

Assuming cubic cells (∆𝑥 = ∆𝑦 = ∆𝑧), the coefficients given in (Karkkainen et al. 2006) (𝛼 = 7/12, 𝛽 = 1/12
and 𝜉 = 1/48) allow for the Courant condition to be at ∆𝑡 = ∆𝑥, which equates to having no numerical dispersion
along the principal axes. The algorithm reduces to the FDTD algorithm with 𝛼 = 1 and 𝛽 = 𝜉 = 0. An extension
to non-cubic cells is provided by Cowan, et al. in 3-D in (Cowan et al. 2013) and was given by Pukhov in 2-D in
(Pukhov 1999). An alternative NSFDTD implementation that enables superluminous waves is also given by Lehe et
al. in (Lehe et al. 2013).

As mentioned above, a key feature of the algorithms based on NSFDTD is that some implementations (Karkkainen et
al. 2006; Cowan et al. 2013) enable the time step ∆𝑡 = ∆𝑥 along one or more axes and no numerical dispersion along
those axes. However, as shown in (Vay et al. 2011), an instability develops at the Nyquist wavelength at (or very near)
such a timestep. It is also shown in the same paper that removing the Nyquist component in all the source terms using
a bilinear filter (see description of the filter below) suppresses this instability.

Pseudo Spectral Analytical Time Domain (PSATD)

Maxwell’s equations in Fourier space are given by

𝜕Ẽ

𝜕𝑡
= 𝑖k× B̃− J̃

𝜕B̃

𝜕𝑡
= −𝑖k× Ẽ

[𝑖k · Ẽ = 𝜌]

[𝑖k · B̃ = 0]
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where �̃� is the Fourier Transform of the quantity 𝑎. As with the real space formulation, provided that the continuity
equation 𝜕𝜌/𝜕𝑡 + 𝑖k · J̃ = 0 is satisfied, then the last two equations will automatically be satisfied at any time if
satisfied initially and do not need to be explicitly integrated.

Decomposing the electric field and current between longitudinal and transverse components Ẽ = Ẽ𝐿 + Ẽ𝑇 = k̂(k̂ ·
Ẽ) − k̂× (k̂× Ẽ) and J̃ = J̃𝐿 + J̃𝑇 = k̂(k̂ · J̃) − k̂× (k̂× J̃) gives

𝜕Ẽ𝑇

𝜕𝑡
= 𝑖k× B̃− J̃T

𝜕Ẽ𝐿

𝜕𝑡
= −J̃L

𝜕B̃

𝜕𝑡
= −𝑖k× Ẽ

with k̂ = k/𝑘.

If the sources are assumed to be constant over a time interval ∆𝑡, the system of equations is solvable analytically and
is given by (see (Haber et al. 1973) for the original formulation and (Jean-Luc Vay, Haber, and Godfrey 2013) for a
more detailed derivation):

[Eq:PSATD]

Ẽ𝑛+1
𝑇 = 𝐶Ẽ𝑛

𝑇 + 𝑖𝑆k̂× B̃𝑛 − 𝑆

𝑘
J̃
𝑛+1/2
𝑇

Ẽ𝑛+1
𝐿 = Ẽ𝑛

𝐿 − ∆𝑡J̃
𝑛+1/2
𝐿

B̃𝑛+1 = 𝐶B̃𝑛 − 𝑖𝑆k̂× Ẽ𝑛

+ 𝑖
1 − 𝐶

𝑘
k̂× J̃𝑛+1/2

with 𝐶 = cos (𝑘∆𝑡) and 𝑆 = sin (𝑘∆𝑡).

Combining the transverse and longitudinal components, gives

Ẽ𝑛+1 = 𝐶Ẽ𝑛 + 𝑖𝑆k̂× B̃𝑛 − 𝑆

𝑘
J̃𝑛+1/2

+ (1 − 𝐶)k̂(k̂ · Ẽ𝑛)

+ k̂(k̂ · J̃𝑛+1/2)

(︂
𝑆

𝑘
− ∆𝑡

)︂
,

B̃𝑛+1 = 𝐶B̃𝑛 − 𝑖𝑆k̂× Ẽ𝑛

+ 𝑖
1 − 𝐶

𝑘
k̂× J̃𝑛+1/2.

For fields generated by the source terms without the self-consistent dynamics of the charged particles, this algorithm
is free of numerical dispersion and is not subject to a Courant condition. Furthermore, this solution is exact for any
time step size subject to the assumption that the current source is constant over that time step.

As shown in (Jean-Luc Vay, Haber, and Godfrey 2013), by expanding the coefficients 𝑆ℎ and 𝐶ℎ in Taylor series and
keeping the leading terms, the PSATD formulation reduces to the perhaps better known pseudo-spectral time-domain
(PSTD) formulation (Dawson 1983; Liu 1997):

Ẽ𝑛+1 = Ẽ𝑛 + 𝑖∆𝑡k× B̃𝑛+1/2 − ∆𝑡J̃𝑛+1/2,

B̃𝑛+3/2 = B̃𝑛+1/2 − 𝑖∆𝑡k× Ẽ𝑛+1.

The dispersion relation of the PSTD solver is given by sin(𝜔Δ𝑡
2 ) = 𝑘Δ𝑡

2 . In contrast to the PSATD solver, the PSTD
solver is subject to numerical dispersion for a finite time step and to a Courant condition that is given by ∆𝑡 ≤
2
𝜋

(︁
1

Δ𝑥2 + 1
Δ𝑦2 + 1

Δ𝑥2

)︁−1/2

.
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The PSATD and PSTD formulations that were just given apply to the field components located at the nodes of the grid.
As noted in (Ohmura and Okamura 2010), they can also be easily recast on a staggered Yee grid by multiplication of
the field components by the appropriate phase factors to shift them from the collocated to the staggered locations. The
choice between a collocated and a staggered formulation is application-dependent.

Spectral solvers used to be very popular in the years 1970s to early 1990s, before being replaced by finite-difference
methods with the advent of parallel supercomputers that favored local methods. However, it was shown recently
that standard domain decomposition with Fast Fourier Transforms that are local to each subdomain could be used
effectively with PIC spectral methods (Jean-Luc Vay, Haber, and Godfrey 2013), at the cost of truncation errors in the
guard cells that could be neglected. A detailed analysis of the effectiveness of the method with exact evaluation of the
magnitude of the effect of the truncation error is given in (Vincenti and Vay 2016) for stencils of arbitrary order (up-to
the infinite “spectral” order).

5.2.3 Current deposition

The current densities are deposited on the computational grid from the particle position and velocities, employing
splines of various orders (Abe et al. 1986).

𝜌 =
1

∆𝑥∆𝑦∆𝑧

∑︁
𝑛

𝑞𝑛𝑆𝑛

J =
1

∆𝑥∆𝑦∆𝑧

∑︁
𝑛

𝑞𝑛vn𝑆𝑛

In most applications, it is essential to prevent the accumulation of errors resulting from the violation of the discretized
Gauss’ Law. This is accomplished by providing a method for depositing the current from the particles to the grid that
preserves the discretized Gauss’ Law, or by providing a mechanism for “divergence cleaning” (Birdsall and Langdon
1991; Langdon 1992; Marder 1987; Vay and Deutsch 1998; Munz et al. 2000). For the former, schemes that allow a
deposition of the current that is exact when combined with the Yee solver is given in (Villasenor and Buneman 1992)
for linear splines and in (Esirkepov 2001) for splines of arbitrary order.

The NSFDTD formulations given above and in (Pukhov 1999; Vay et al. 2011; Cowan et al. 2013; Lehe et al. 2013)
apply to the Maxwell-Faraday equation, while the discretized Maxwell-Ampere equation uses the FDTD formulation.
Consequently, the charge conserving algorithms developed for current deposition (Villasenor and Buneman 1992;
Esirkepov 2001) apply readily to those NSFDTD-based formulations. More details concerning those implementations,
including the expressions for the numerical dispersion and Courant condition are given in (Pukhov 1999; Vay et al.
2011; Cowan et al. 2013; Lehe et al. 2013).

In the case of the pseudospectral solvers, the current deposition algorithm generally does not satisfy the discretized
continuity equation in Fourier space 𝜌𝑛+1 = 𝜌𝑛 − 𝑖∆𝑡k · J̃𝑛+1/2. In this case, a Boris correction (Birdsall and
Langdon 1991) can be applied in 𝑘 space in the form Ẽ𝑛+1

𝑐 = Ẽ𝑛+1 −
(︁
k · Ẽ𝑛+1 + 𝑖𝜌𝑛+1

)︁
k̂/𝑘, where Ẽ𝑐 is

the corrected field. Alternatively, a correction to the current can be applied (with some similarity to the current
deposition presented by Morse and Nielson in their potential-based model in (Morse and Nielson 1971)) using
J̃
𝑛+1/2
𝑐 = J̃𝑛+1/2 −

[︁
k · J̃𝑛+1/2 − 𝑖

(︀
𝜌𝑛+1 − 𝜌𝑛

)︀
/∆𝑡

]︁
k̂/𝑘, where J̃𝑐 is the corrected current. In this case, the

transverse component of the current is left untouched while the longitudinal component is effectively replaced by the
one obtained from integration of the continuity equation, ensuring that the corrected current satisfies the continuity
equation. The advantage of correcting the current rather than the electric field is that it is more local and thus more
compatible with domain decomposition of the fields for parallel computation (Jean Luc Vay, Haber, and Godfrey
2013).

Alternatively, an exact current deposition can be written for the pseudospectral solvers, following the geometrical
interpretation of existing methods in real space (Morse and Nielson 1971; Villasenor and Buneman 1992; Esirkepov
2001), thereby averaging the currents of the paths following grid lines between positions (𝑥𝑛, 𝑦𝑛) and (𝑥𝑛+1, 𝑦𝑛+1),
which is given in 2D (extension to 3D follows readily) for 𝑘 ̸= 0 by (Jean Luc Vay, Haber, and Godfrey 2013):

J̃𝑘 ̸=0 =
𝑖D̃

k
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with

𝐷𝑥 =
1

2∆𝑡

∑︁
𝑖

𝑞𝑖[Γ(𝑥𝑛+1
𝑖 , 𝑦𝑛+1

𝑖 ) − Γ(𝑥𝑛𝑖 , 𝑦
𝑛+1
𝑖 )

+Γ(𝑥𝑛+1
𝑖 , 𝑦𝑛𝑖 ) − Γ(𝑥𝑛𝑖 , 𝑦

𝑛
𝑖 )],

𝐷𝑦 =
1

2∆𝑡

∑︁
𝑖

𝑞𝑖[Γ(𝑥𝑛+1
𝑖 , 𝑦𝑛+1

𝑖 ) − Γ(𝑥𝑛+1
𝑖 , 𝑦𝑛𝑖 )

+Γ(𝑥𝑛𝑖 , 𝑦
𝑛+1
𝑖 ) − Γ(𝑥𝑛𝑖 , 𝑦

𝑛
𝑖 )],

where Γ is the macro-particle form factor. The contributions for 𝑘 = 0 are integrated directly in real space (Jean Luc
Vay, Haber, and Godfrey 2013).

5.2.4 Field gather

The current densities are deposited on the computational grid from the particle position and velocities, employing
splines of various orders (Abe et al. 1986).

𝜌 =
1

∆𝑥∆𝑦∆𝑧

∑︁
𝑛

𝑞𝑛𝑆𝑛

J =
1

∆𝑥∆𝑦∆𝑧

∑︁
𝑛

𝑞𝑛vn𝑆𝑛

In most applications, it is essential to prevent the accumulation of errors resulting from the violation of the discretized
Gauss’ Law. This is accomplished by providing a method for depositing the current from the particles to the grid that
preserves the discretized Gauss’ Law, or by providing a mechanism for “divergence cleaning” (Birdsall and Langdon
1991; Langdon 1992; Marder 1987; Vay and Deutsch 1998; Munz et al. 2000). For the former, schemes that allow a
deposition of the current that is exact when combined with the Yee solver is given in (Villasenor and Buneman 1992)
for linear splines and in (Esirkepov 2001) for splines of arbitrary order.

The NSFDTD formulations given above and in (Pukhov 1999; Vay et al. 2011; Cowan et al. 2013; Lehe et al. 2013)
apply to the Maxwell-Faraday equation, while the discretized Maxwell-Ampere equation uses the FDTD formulation.
Consequently, the charge conserving algorithms developed for current deposition (Villasenor and Buneman 1992;
Esirkepov 2001) apply readily to those NSFDTD-based formulations. More details concerning those implementations,
including the expressions for the numerical dispersion and Courant condition are given in (Pukhov 1999; Vay et al.
2011; Cowan et al. 2013; Lehe et al. 2013).

In the case of the pseudospectral solvers, the current deposition algorithm generally does not satisfy the discretized
continuity equation in Fourier space 𝜌𝑛+1 = 𝜌𝑛 − 𝑖∆𝑡k · J̃𝑛+1/2. In this case, a Boris correction (Birdsall and
Langdon 1991) can be applied in 𝑘 space in the form Ẽ𝑛+1

𝑐 = Ẽ𝑛+1 −
(︁
k · Ẽ𝑛+1 + 𝑖𝜌𝑛+1

)︁
k̂/𝑘, where Ẽ𝑐 is

the corrected field. Alternatively, a correction to the current can be applied (with some similarity to the current
deposition presented by Morse and Nielson in their potential-based model in (Morse and Nielson 1971)) using
J̃
𝑛+1/2
𝑐 = J̃𝑛+1/2 −

[︁
k · J̃𝑛+1/2 − 𝑖

(︀
𝜌𝑛+1 − 𝜌𝑛

)︀
/∆𝑡

]︁
k̂/𝑘, where J̃𝑐 is the corrected current. In this case, the

transverse component of the current is left untouched while the longitudinal component is effectively replaced by the
one obtained from integration of the continuity equation, ensuring that the corrected current satisfies the continuity
equation. The advantage of correcting the current rather than the electric field is that it is more local and thus more
compatible with domain decomposition of the fields for parallel computation (Jean Luc Vay, Haber, and Godfrey
2013).

Alternatively, an exact current deposition can be written for the pseudospectral solvers, following the geometrical
interpretation of existing methods in real space (Morse and Nielson 1971; Villasenor and Buneman 1992; Esirkepov
2001), thereby averaging the currents of the paths following grid lines between positions (𝑥𝑛, 𝑦𝑛) and (𝑥𝑛+1, 𝑦𝑛+1),
which is given in 2D (extension to 3D follows readily) for 𝑘 ̸= 0 by (Jean Luc Vay, Haber, and Godfrey 2013):

J̃𝑘 ̸=0 =
𝑖D̃

k
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with

𝐷𝑥 =
1

2∆𝑡

∑︁
𝑖

𝑞𝑖[Γ(𝑥𝑛+1
𝑖 , 𝑦𝑛+1

𝑖 ) − Γ(𝑥𝑛𝑖 , 𝑦
𝑛+1
𝑖 )

+Γ(𝑥𝑛+1
𝑖 , 𝑦𝑛𝑖 ) − Γ(𝑥𝑛𝑖 , 𝑦

𝑛
𝑖 )],

𝐷𝑦 =
1

2∆𝑡

∑︁
𝑖

𝑞𝑖[Γ(𝑥𝑛+1
𝑖 , 𝑦𝑛+1

𝑖 ) − Γ(𝑥𝑛+1
𝑖 , 𝑦𝑛𝑖 )

+Γ(𝑥𝑛𝑖 , 𝑦
𝑛+1
𝑖 ) − Γ(𝑥𝑛𝑖 , 𝑦

𝑛
𝑖 )],

where Γ is the macro-particle form factor. The contributions for 𝑘 = 0 are integrated directly in real space (Jean Luc
Vay, Haber, and Godfrey 2013).

5.3 Filtering

It is common practice to apply digital filtering to the charge or current density in Particle-In-Cell simulations as a
complement or an alternative to using higher order splines (Birdsall and Langdon 1991). A commonly used filter in
PIC simulations is the three points filter 𝜑𝑓𝑗 = 𝛼𝜑𝑗 + (1 − 𝛼) (𝜑𝑗−1 + 𝜑𝑗+1) /2 where 𝜑𝑓 is the filtered quantity.
This filter is called a bilinear filter when 𝛼 = 0.5. Assuming 𝜑 = 𝑒𝑗𝑘𝑥 and 𝜑𝑓 = 𝑔 (𝛼, 𝑘) 𝑒𝑗𝑘𝑥, the filter gain 𝑔
is given as a function of the filtering coefficient 𝛼 and the wavenumber 𝑘 by 𝑔 (𝛼, 𝑘) = 𝛼 + (1 − 𝛼) cos (𝑘∆𝑥) ≈
1 − (1 − 𝛼) (𝑘Δ𝑥)2

2 +𝑂
(︀
𝑘4
)︀
. The total attenuation 𝐺 for 𝑛 successive applications of filters of coefficients 𝛼1. . .𝛼𝑛

is given by 𝐺 =
∏︀𝑛

𝑖=1 𝑔 (𝛼𝑖, 𝑘) ≈ 1 − (𝑛−
∑︀𝑛

𝑖=1 𝛼𝑖)
(𝑘Δ𝑥)2

2 + 𝑂
(︀
𝑘4
)︀
. A sharper cutoff in 𝑘 space is provided by

using 𝛼𝑛 = 𝑛−
∑︀𝑛−1

𝑖=1 𝛼𝑖, so that 𝐺 ≈ 1 +𝑂
(︀
𝑘4
)︀
. Such step is called a “compensation” step (Birdsall and Langdon

1991). For the bilinear filter (𝛼 = 1/2), the compensation factor is 𝛼𝑐 = 2 − 1/2 = 3/2. For a succession of 𝑛
applications of the bilinear factor, it is 𝛼𝑐 = 𝑛/2 + 1.

It is sometimes necessary to filter on a relatively wide band of wavelength, necessitating the application of a large
number of passes of the bilinear filter or on the use of filters acting on many points. The former can become very
intensive computationally while the latter is problematic for parallel computations using domain decomposition, as
the footprint of the filter may eventually surpass the size of subdomains. A workaround is to use a combination of
filters of limited footprint. A solution based on the combination of three point filters with various strides was proposed
in (Vay et al. 2011) and operates as follows.

The bilinear filter provides complete suppression of the signal at the grid Nyquist wavelength (twice the grid cell size).
Suppression of the signal at integer multiples of the Nyquist wavelength can be obtained by using a stride 𝑠 in the
filter 𝜑𝑓𝑗 = 𝛼𝜑𝑗 + (1 − 𝛼) (𝜑𝑗−𝑠 + 𝜑𝑗+𝑠) /2 for which the gain is given by 𝑔 (𝛼, 𝑘) = 𝛼 + (1 − 𝛼) cos (𝑠𝑘∆𝑥) ≈
1 − (1 − 𝛼) (𝑠𝑘Δ𝑥)2

2 + 𝑂
(︀
𝑘4
)︀
. For a given stride, the gain is given by the gain of the bilinear filter shifted in k

space, with the pole 𝑔 = 0 shifted from the wavelength 𝜆 = 2/∆𝑥 to 𝜆 = 2𝑠/∆𝑥, with additional poles, as given
by 𝑠𝑘∆𝑥 = arccos

(︁
𝛼

𝛼−1

)︁
(mod 2𝜋). The resulting filter is pass band between the poles, but since the poles are

spread at different integer values in k space, a wide band low pass filter can be constructed by combining filters using
different strides. As shown in (Vay et al. 2011), the successive application of 4-passes + compensation of filters with
strides 1, 2 and 4 has a nearly equivalent fall-off in gain as 80 passes + compensation of a bilinear filter. Yet, the strided
filter solution needs only 15 passes of a three-point filter, compared to 81 passes for an equivalent n-pass bilinear filter,
yielding a gain of 5.4 in number of operations in favor of the combination of filters with stride. The width of the filter
with stride 4 extends only on 9 points, compared to 81 points for a single pass equivalent filter, hence giving a gain of
9 in compactness for the stride filters combination in comparison to the single-pass filter with large stencil, resulting
in more favorable scaling with the number of computational cores for parallel calculations.
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5.4 Mesh refinement

The mesh refinement methods that have been implemented in WarpX were developed following the following
principles: i) avoidance of spurious effects from mesh refinement, or minimization of such effects; ii) user

controllability of the spurious effects’ relative magnitude; iii) simplicity of implementation. The two main generic
issues that were identified are: a) spurious self-force on macroparticles close to the mesh refinement interface (J. Vay

et al. 2002; Colella and Norgaard 2010); b) reflection (and possible amplification) of short wavelength
electromagnetic waves at the mesh refinement interface (Vay 2001). The two effects are due to the loss of translation

invariance introduced by the asymmetry of the grid on each side of the mesh refinement interface.

In addition, for some implementations where the field that is computed at a given level is affected by the solution at
finer levels, there are cases where the procedure violates the integral of Gauss’ Law around the refined patch, leading
to long range errors (J. Vay et al. 2002; Colella and Norgaard 2010). As will be shown below, in the procedure that

has been developed in WarpX, the field at a given refinement level is not affected by the solution at finer levels, and is
thus not affected by this type of error.

5.4.1 Electrostatic

A cornerstone of the Particle-In-Cell method is that assuming a particle lying in a hypothetical infinite grid, then if
the grid is regular and symmetrical, and if the order of field gathering matches the order of charge (or current)

deposition, then there is no self-force of the particle acting on itself: a) anywhere if using the so-called “momentum
conserving” gathering scheme; b) on average within one cell if using the “energy conserving” gathering scheme

(Birdsall and Langdon 1991). A breaking of the regularity and/or symmetry in the grid, whether it is from the use of
irregular meshes or mesh refinement, and whether one uses finite difference, finite volume or finite elements, results
in a net spurious self-force (which does not average to zero over one cell) for a macroparticle close to the point of
irregularity (mesh refinement interface for the current purpose) (J. Vay et al. 2002; Colella and Norgaard 2010).

A sketch of the implementation of mesh refinement in WarpX is given in Figure [fig:ESAMR] (left). Given the
solution of the electric potential at a refinement level 𝐿𝑛, it is interpolated onto the boundaries of the grid patch(es) at

the next refined level 𝐿𝑛+1. The electric potential is then computed at level 𝐿𝑛+1 by solving the Poisson equation.
This procedure necessitates the knowledge of the charge density at every level of refinement. For efficiency, the
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Fig. 5.4: Sketches of the implementation of mesh refinement in WarpX with the electrostatic (left) and electromagnetic
(right) solvers. In both cases, the charge/current from particles are deposited at the finest levels first, then interpolated
recursively to coarser levels. In the electrostatic case, the potential is calculated first at the coarsest level 𝐿0, the
solution interpolated to the boundaries of the refined patch 𝑟 at the next level 𝐿1 and the potential calculated at 𝐿1.
The procedure is repeated iteratively up to the highest level. In the electromagnetic case, the fields are computed
independently on each grid and patch without interpolation at boundaries. Patches are terminated by absorbing layers
(PML) to prevent the reflection of electromagnetic waves. Additional coarse patch 𝑐 and fine grid 𝑎 are needed so that
the full solution is obtained by substitution on 𝑎 as 𝐹𝑛+1(𝑎) = 𝐹𝑛+1(𝑟) + 𝐼[𝐹𝑛(𝑠) − 𝐹𝑛+1(𝑐)] where 𝐹 is the field,
and 𝐼 is a coarse-to-fine interpolation operator. In both cases, the field solution at a given level 𝐿𝑛 is unaffected by
the solution at higher levels 𝐿𝑛+1 and up, allowing for mitigation of some spurious effects (see text) by providing a
transition zone via extension of the patches by a few cells beyond the desired refined area (red & orange rectangles) in
which the field is interpolated onto particles from the coarser parent level only.
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macroparticle charge is deposited on the highest level patch that contains them, and the charge density of each patch
is added recursively to lower levels, down to the lowest.

Fig. 5.5: Position history of one charged particle attracted by its image induced by a nearby metallic (dirichlet)
boundary. The particle is initialized at rest. Without refinement patch (reference case), the particle is accelerated by
its image, is reflected specularly at the wall, then decelerates until it reaches its initial position at rest. If the particle
is initialized inside a refinement patch, the particle is initially accelerated toward the wall but is spuriously reflected
before it reaches the boundary of the patch whether using the method implemented in WarpX or the MC method.
Providing a surrounding transition region 2 or 4 cells wide in which the potential is interpolated from the parent coarse
solution reduces significantly the effect of the spurious self-force.

The presence of the self-force is illustrated on a simple test case that was introduced in (J. Vay et al. 2002) and also
used in (Colella and Norgaard 2010): a single macroparticle is initialized at rest within a single refinement patch four
cells away from the patch refinement boundary. The patch at level 𝐿1 has 32 × 32 cells and is centered relative to the
lowest 64 × 64 grid at level 𝐿0 (“main grid”), while the macroparticle is centered in one direction but not in the other.
The boundaries of the main grid are perfectly conducting, so that the macroparticle is attracted to the closest wall by
its image. Specular reflection is applied when the particle reaches the boundary so that the motion is cyclic. The test
was performed with WarpX using either linear or quadratic interpolation when gathering the main grid solution onto
the refined patch boundary. It was also performed using another method from P. McCorquodale et al (labeled “MC”

in this paper) based on the algorithm given in (Mccorquodale et al. 2004), which employs a more elaborate procedure
involving two-ways interpolations between the main grid and the refined patch. A reference case was also run using a

single 128 × 128 grid with no refined patch, in which it is observed that the particle propagates toward the closest
boundary at an accelerated pace, is reflected specularly at the boundary, then slows down until it reaches its initial
position at zero velocity. The particle position histories are shown for the various cases in Fig. [fig:ESselfforce]. In

all the cases using the refinement patch, the particle was spuriously reflected near the patch boundary and was
effectively trapped in the patch. We notice that linear interpolation performs better than quadratic, and that the simple
method implemented in WarpX performs better than the other proposed method for this test (see discussion below).

The magnitude of the spurious self-force as a function of the macroparticle position was mapped and is shown in Fig.
[fig:ESselfforcemap] for the WarpX and MC algorithms using linear or quadratic interpolations between grid levels.
It is observed that the magnitude of the spurious self-force decreases rapidly with the distance between the particle

and the refined patch boundary, at a rate approaching one order of magnitude per cell for the four cells closest to the
boundary and about one order of magnitude per six cells beyond. The method implemented in WarpX offers a weaker

spurious force on average and especially at the cells that are the closest to the coarse-fine interface where it is the
largest and thus matters most. We notice that the magnitude of the spurious self-force depends strongly on the

distance to the edge of the patch and to the nodes of the underlying coarse grid, but weakly on the order of deposition
and size of the patch.

A method was devised and implemented in WarpX for reducing the magnitude of spurious self-forces near the
coarse-fine boundaries as follows. Noting that the coarse grid solution is unaffected by the presence of the patch and
is thus free of self-force, extra “transition” cells are added around the “effective” refined area. Within the effective
area, the particles gather the potential in the fine grid. In the extra transition cells surrounding the refinement patch,

the force is gathered directly from the coarse grid (an option, which has not yet been implemented, would be to
interpolate between the coarse and fine grid field solutions within the transition zone so as to provide continuity of

the force experienced by the particles at the interface). The number of cells allocated in the transition zones is

66 J.-L. Vay, R. Lehe



WarpX Documentation

Fig. 5.6: (left) Maps of the magnitude of the spurious self-force 𝜖 in arbitrary units within one quarter of the refined

patch, defined as 𝜖 =
√︁

(𝐸𝑥 − 𝐸𝑟𝑒𝑓
𝑥 )2 + (𝐸𝑦 − 𝐸𝑟𝑒𝑓

𝑦 )2, where 𝐸𝑥 and 𝐸𝑦 are the electric field components within
the patch experienced by one particle at a given location and 𝐸𝑟𝑒𝑓

𝑥 and 𝐸𝑟𝑒𝑓
𝑦 are the electric field from a reference

solution. The map is given for the WarpX and the MC mesh refinement algorithms and for linear and quadratic
interpolation at the patch refinement boundary. (right) Lineouts of the maximum (taken over neighboring cells) of the
spurious self-force. Close to the interface boundary (x=0), the spurious self-force decreases at a rate close to one order
of magnitude per cell (red line), then at about one order of magnitude per six cells (green line).

controllable by the user in WarpX, giving the opportunity to check whether the spurious self-force is affecting the
calculation by repeating it using different thicknesses of the transition zones. The control of the spurious force using
the transition zone is illustrated in Fig. [fig:ESselfforce], where the calculation with WarpX using linear interpolation

at the patch interface was repeated using either two or four cells transition regions (measured in refined patch cell
units). Using two extra cells allowed for the particle to be free of spurious trapping within the refined area and follow

a trajectory that is close to the reference one, and using four extra cells improved further to the point where the
resulting trajectory becomes undistinguishable from the reference one. We note that an alternative method was
devised for reducing the magnitude of self-force near the coarse-fine boundaries for the MC method, by using a

special deposition procedure near the interface (Colella and Norgaard 2010).

5.4.2 Electromagnetic

The method that is used for electrostatic mesh refinement is not directly applicable to electromagnetic calculations.
As was shown in section 3.4 of (Vay 2001), refinement schemes relying solely on interpolation between coarse and
fine patches lead to the reflection with amplification of the short wavelength modes that fall below the cutoff of the
Nyquist frequency of the coarse grid. Unless these modes are damped heavily or prevented from occurring at their

source, they may affect particle motion and their effect can escalate if trapped within a patch, via multiple successive
reflections with amplification.

To circumvent this issue, an additional coarse patch (with the same resolution as the parent grid) is added, as shown
in Fig. [fig:ESAMR]-right and described in (Vay, Adam, and Heron 2004). Both the fine and the coarse grid patches
are terminated by Perfectly Matched Layers, reducing wave reflection by orders of magnitude, controllable by the

user (Berenger 1996; J.-L. Vay 2002). The source current resulting from the motion of charged macroparticles within
the refined region is accumulated on the fine patch and is then interpolated onto the coarse patch and added onto the

parent grid. The process is repeated recursively from the finest level down to the coarsest. The Maxwell equations are
then solved for one time interval on the entire set of grids, by default for one time step using the time step of the finest

grid. The field on the coarse and fine patches only contain the contributions from the particles that have evolved

5.4. Mesh refinement 67



WarpX Documentation

within the refined area but not from the current sources outside the area. The total contribution of the field from
sources within and outside the refined area is obtained by adding the field from the refined grid 𝐹 (𝑟), and adding an
interpolation 𝐼 of the difference between the relevant subset 𝑠 of the field in the parent grid 𝐹 (𝑠) and the field of the

coarse grid 𝐹 (𝑐), on an auxiliary grid 𝑎, i.e. 𝐹 (𝑎) = 𝐹 (𝑟) + 𝐼[𝐹 (𝑠) − 𝐹 (𝑐)]. The field on the parent grid subset
𝐹 (𝑠) contains contributions from sources from both within and outside of the refined area. Thus, in effect, there is
substitution of the coarse field resulting from sources within the patch area by its fine resolution counterpart. The

operation is carried out recursively starting at the coarsest level up to the finest. An option has been implemented in
which various grid levels are pushed with different time steps, given as a fixed fraction of the individual grid Courant

conditions (assuming same cell aspect ratio for all grids and refinement by integer factors). In this case, the fields
from the coarse levels, which are advanced less often, are interpolated in time.

The substitution method has two potential drawbacks due to the inexact cancellation between the coarse and fine
patches of : (i) the remnants of ghost fixed charges created by the particles entering and leaving the patches (this

effect is due to the use of the electromagnetic solver and is different from the spurious self-force that was described
for the electrostatic case); (ii) if using a Maxwell solver with a low-order stencil, the electromagnetic waves traveling
on each patch at slightly different velocity due to numerical dispersion. The first issue results in an effective spurious

multipole field whose magnitude decreases very rapidly with the distance to the patch boundary, similarly to the
spurious self-force in the electrostatic case. Hence, adding a few extra transition cells surrounding the patches

mitigates this effect very effectively. The tunability of WarpX’s electromagnetic finite-difference and pseudo-spectral
solvers provides the means to optimize the numerical dispersion so as to minimize the second effect for a given

application, which has been demonstrated on the laser-plasma interaction test case presented in (Vay, Adam, and
Heron 2004). Both effects and their mitigation are described in more detail in (Vay, Adam, and Heron 2004).

Caustics are supported anywhere on the grid with an accuracy that is set by the local resolution, and will be
adequately resolved if the grid resolution supports the necessary modes from their sources to the points of wavefront
crossing. The mesh refinement method that is implemented in WarpX has the potential to provide higher efficiency

than the standard use of fixed gridding, by offering a path toward adaptive gridding following wavefronts.
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5.5 Boundary conditions

5.5.1 Open boundary condition for electromagnetic waves

For the TE case, the original Berenger’s Perfectly Matched Layer (PML) writes

𝜀0
𝜕𝐸𝑥

𝜕𝑡
+ 𝜎𝑦𝐸𝑥 =

𝜕𝐻𝑧

𝜕𝑦

𝜀0
𝜕𝐸𝑦

𝜕𝑡
+ 𝜎𝑥𝐸𝑦 = − 𝜕𝐻𝑧

𝜕𝑥

𝜇0
𝜕𝐻𝑧𝑥

𝜕𝑡
+ 𝜎*

𝑥𝐻𝑧𝑥 = − 𝜕𝐸𝑦

𝜕𝑥

𝜇0
𝜕𝐻𝑧𝑦

𝜕𝑡
+ 𝜎*

𝑦𝐻𝑧𝑦 =
𝜕𝐸𝑥

𝜕𝑦

𝐻𝑧 =𝐻𝑧𝑥 +𝐻𝑧𝑦

This can be generalized to

𝜀0
𝜕𝐸𝑥

𝜕𝑡
+ 𝜎𝑦𝐸𝑥 =

𝑐𝑦
𝑐

𝜕𝐻𝑧

𝜕𝑦
+ 𝜎𝑦𝐻𝑧

𝜀0
𝜕𝐸𝑦

𝜕𝑡
+ 𝜎𝑥𝐸𝑦 = − 𝑐𝑥

𝑐

𝜕𝐻𝑧

𝜕𝑥
+ 𝜎𝑥𝐻𝑧

𝜇0
𝜕𝐻𝑧𝑥

𝜕𝑡
+ 𝜎*

𝑥𝐻𝑧𝑥 = − 𝑐*𝑥
𝑐

𝜕𝐸𝑦

𝜕𝑥
+ 𝜎*

𝑥𝐸𝑦

𝜇0
𝜕𝐻𝑧𝑦

𝜕𝑡
+ 𝜎*

𝑦𝐻𝑧𝑦 =
𝑐*𝑦
𝑐

𝜕𝐸𝑥

𝜕𝑦
+ 𝜎*

𝑦𝐸𝑥

𝐻𝑧 =𝐻𝑧𝑥 +𝐻𝑧𝑦

For 𝑐𝑥 = 𝑐𝑦 = 𝑐*𝑥 = 𝑐*𝑦 = 𝑐 and 𝜎𝑥 = 𝜎𝑦 = 𝜎*
𝑥 = 𝜎*

𝑦 = 0, this system reduces to the Berenger PML medium, while
adding the additional constraint 𝜎𝑥 = 𝜎𝑦 = 𝜎*

𝑥 = 𝜎*
𝑦 = 0 leads to the system of Maxwell equations in vacuum.

[Sec:analytic theory, propa plane wave]Propagation of a Plane Wave in an APML Medium

We consider a plane wave of magnitude (𝐸0, 𝐻𝑧𝑥0, 𝐻𝑧𝑦0) and pulsation 𝜔 propagating in the APML medium with an
angle 𝜙 relative to the x axis

𝐸𝑥 = − 𝐸0 sin𝜙𝑒𝑖𝜔(𝑡−𝛼𝑥−𝛽𝑦)

𝐸𝑦 =𝐸0 cos𝜙𝑒𝑖𝜔(𝑡−𝛼𝑥−𝛽𝑦)

𝐻𝑧𝑥 =𝐻𝑧𝑥0𝑒
𝑖𝜔(𝑡−𝛼𝑥−𝛽𝑦)

𝐻𝑧𝑦 =𝐻𝑧𝑦0𝑒
𝑖𝜔(𝑡−𝛼𝑥−𝛽𝑦)

where 𝛼 and𝛽 are two complex constants to be determined.

Introducing ([Plane_wave_APML_def_1]), ([Plane_wave_APML_def_2]), ([Plane_wave_AMPL_def_3]) and
([Plane_wave_APML_def_4]) into ([APML_def_1]), ([APML_def_2]), ([APML_def_3]) and ([APML_def_4]) gives

𝜀0𝐸0 sin𝜙− 𝑖
𝜎𝑦
𝜔
𝐸0 sin𝜙 =𝛽

𝑐𝑦
𝑐

(𝐻𝑧𝑥0 +𝐻𝑧𝑦0) + 𝑖
𝜎𝑦

𝜔
(𝐻𝑧𝑥0 +𝐻𝑧𝑦0)

𝜀0𝐸0 cos𝜙− 𝑖
𝜎𝑥
𝜔
𝐸0 cos𝜙 =𝛼

𝑐𝑥
𝑐

(𝐻𝑧𝑥0 +𝐻𝑧𝑦0) − 𝑖
𝜎𝑥

𝜔
(𝐻𝑧𝑥0 +𝐻𝑧𝑦0)

𝜇0𝐻𝑧𝑥0 − 𝑖
𝜎*
𝑥

𝜔
𝐻𝑧𝑥0 =𝛼

𝑐*𝑥
𝑐
𝐸0 cos𝜙− 𝑖

𝜎*
𝑥

𝜔
𝐸0 cos𝜙

𝜇0𝐻𝑧𝑦0 − 𝑖
𝜎*
𝑦

𝜔
𝐻𝑧𝑦0 =𝛽

𝑐*𝑦
𝑐
𝐸0 sin𝜙+ 𝑖

𝜎*
𝑦

𝜔
𝐸0 sin𝜙

5.5. Boundary conditions 69



WarpX Documentation

Defining 𝑍 = 𝐸0/ (𝐻𝑧𝑥0 +𝐻𝑧𝑦0) and using ([Plane_wave_APML_1_1]) and ([Plane_wave_APML_1_2]), we get

𝛽 =

[︂
𝑍
(︁
𝜀0 − 𝑖

𝜎𝑦
𝜔

)︁
sin𝜙− 𝑖

𝜎𝑦

𝜔

]︂
𝑐

𝑐𝑦

𝛼 =

[︂
𝑍
(︁
𝜀0 − 𝑖

𝜎𝑥
𝜔

)︁
cos𝜙+ 𝑖

𝜎𝑥

𝜔

]︂
𝑐

𝑐𝑥

Adding 𝐻𝑧𝑥0 and 𝐻𝑧𝑦0 from ([Plane_wave_APML_1_3]) and ([Plane_wave_APML_1_4]) and substituting the
expressions for 𝛼 and 𝛽 from ([Plane_wave_APML_beta_of_g]) and ([Plane_wave_APML_alpha_of_g]) yields

1

𝑍
=
𝑍
(︀
𝜀0 − 𝑖𝜎𝑥

𝜔

)︀
cos𝜙

𝑐*𝑥
𝑐𝑥

+ 𝑖𝜎𝑥

𝜔
𝑐*𝑥
𝑐𝑥

− 𝑖
𝜎*
𝑥

𝜔

𝜇0 − 𝑖
𝜎*
𝑥

𝜔

cos𝜙

+
𝑍
(︀
𝜀0 − 𝑖

𝜎𝑦

𝜔

)︀
sin𝜙

𝑐*𝑦
𝑐𝑦

− 𝑖
𝜎𝑦

𝜔

𝑐*𝑦
𝑐𝑦

+ 𝑖
𝜎*
𝑦

𝜔

𝜇0 − 𝑖
𝜎*
𝑦

𝜔

sin𝜙

If 𝑐𝑥 = 𝑐*𝑥, 𝑐𝑦 = 𝑐*𝑦 , 𝜎𝑥 = 𝜎*
𝑥, 𝜎𝑦 = 𝜎*

𝑦 , 𝜎𝑥

𝜀0
=

𝜎*
𝑥

𝜇0
and 𝜎𝑦

𝜀0
=

𝜎*
𝑦

𝜇0
then

𝑍 = ±
√︂
𝜇0

𝜀0

which is the impedance of vacuum. Hence, like the PML, given some restrictions on the parameters, the APML does
not generate any reflection at any angle and any frequency. As for the PML, this property is not retained after

discretization, as shown subsequently in this paper.

Calling 𝜓 any component of the field and 𝜓0 its magnitude, we get from ([Plane_wave_APML_def_1]),
([Plane_wave_APML_beta_of_g]), ([Plane_wave_APML_alpha_of_g]) and ([APML_impedance]) that

𝜓 = 𝜓0𝑒
𝑖𝜔(𝑡∓𝑥 cos𝜙/𝑐𝑥∓𝑦 sin𝜙/𝑐𝑦)𝑒

−
(︁
±𝜎𝑥 cos𝜙

𝜀0𝑐𝑥
+𝜎𝑥

𝑐
𝑐𝑥

)︁
𝑥
𝑒
−
(︁
±𝜎𝑦 sin𝜙

𝜀0𝑐𝑦
+𝜎𝑦

𝑐
𝑐𝑦

)︁
𝑦

We assume that we have an APML layer of thickness 𝛿 (measured along 𝑥) and that 𝜎𝑦 = 𝜎𝑦 = 0 and 𝑐𝑦 = 𝑐. Using
([Plane_wave_absorption]), we determine that the coefficient of reflection given by this layer is

𝑅𝐴𝑃𝑀𝐿 (𝜃) =𝑒−(𝜎𝑥 cos𝜙/𝜀0𝑐𝑥+𝜎𝑥𝑐/𝑐𝑥)𝛿𝑒−(𝜎𝑥 cos𝜙/𝜀0𝑐𝑥−𝜎𝑥𝑐/𝑐𝑥)𝛿

=𝑒−2(𝜎𝑥 cos𝜙/𝜀0𝑐𝑥)𝛿

which happens to be the same as the PML theoretical coefficient of reflection if we assume 𝑐𝑥 = 𝑐. Hence, it follows
that for the purpose of wave absorption, the term 𝜎𝑥 seems to be of no interest. However, although this conclusion is

true at the infinitesimal limit, it does not hold for the discretized counterpart.

Discretization

𝐸𝑥|𝑛+1
𝑗+1/2,𝑘,𝑙 − 𝐸𝑥|𝑛𝑗+1/2,𝑘,𝑙

∆𝑡
+ 𝜎𝑦

𝐸𝑥|𝑛+1
𝑗+1/2,𝑘,𝑙 + 𝐸𝑥|𝑛𝑗+1/2,𝑘,𝑙

2
=
𝐻𝑧|𝑛+1/2

𝑗+1/2,𝑘+1/2,𝑙 −𝐻𝑧|𝑛+1/2
𝑗+1/2,𝑘−1/2,𝑙

∆𝑦

𝐸𝑦|𝑛+1
𝑗,𝑘+1/2,𝑙 − 𝐸𝑦|𝑛𝑗,𝑘+1/2,𝑙

∆𝑡
+ 𝜎𝑥

𝐸𝑦|𝑛+1
𝑗,𝑘+1/2,𝑙 + 𝐸𝑦|𝑛𝑗,𝑘+1/2,𝑙

2
= −

𝐻𝑧|𝑛+1/2
𝑗+1/2,𝑘+1/2,𝑙 −𝐻𝑧|𝑛+1/2

𝑗−1/2,𝑘+1/2,𝑙

∆𝑥

𝐻𝑧𝑥|𝑛+3/2
𝑗+1/2,𝑘+1/2,𝑙 −𝐻𝑧𝑥|𝑛𝑗+1/2,𝑘+1/2,𝑙

∆𝑡
+ 𝜎*

𝑥

𝐻𝑧𝑥|𝑛+3/2
𝑗+1/2,𝑘+1/2,𝑙 +𝐻𝑧𝑥|𝑛𝑗+1/2,𝑘+1/2,𝑙

2
= −

𝐸𝑦|𝑛+1
𝑗+1,𝑘+1/2,𝑙 − 𝐸𝑦|𝑛+1

𝑗,𝑘+1/2,𝑙

∆𝑥

𝐻𝑧𝑦|𝑛+3/2
𝑗+1/2,𝑘+1/2,𝑙 −𝐻𝑧𝑦|𝑛𝑗+1/2,𝑘+1/2,𝑙

∆𝑡
+ 𝜎*

𝑦

𝐻𝑧𝑦|𝑛+3/2
𝑗+1/2,𝑘+1/2,𝑙 +𝐻𝑧𝑦|𝑛𝑗+1/2,𝑘+1/2,𝑙

2
=
𝐸𝑥|𝑛+1

𝑗+1/2,𝑘+1,𝑙 − 𝐸𝑥|𝑛+1
𝑗+1/2,𝑘,𝑙

∆𝑦

𝐻𝑧 =𝐻𝑧𝑥 +𝐻𝑧𝑦
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𝐸𝑥|𝑛+1
𝑗+1/2,𝑘,𝑙 =

(︂
1 − 𝜎𝑦∆𝑡/2

1 + 𝜎𝑦∆𝑡/2

)︂
𝐸𝑥|𝑛𝑗+1/2,𝑘,𝑙 +

∆𝑡/∆𝑦

1 + 𝜎𝑦∆𝑡/2

(︁
𝐻𝑧|𝑛+1/2

𝑗+1/2,𝑘+1/2,𝑙 −𝐻𝑧|𝑛+1/2
𝑗+1/2,𝑘−1/2,𝑙

)︁
𝐸𝑦|𝑛+1

𝑗,𝑘+1/2,𝑙 =

(︂
1 − 𝜎𝑥∆𝑡/2

1 + 𝜎𝑥∆𝑡/2

)︂
𝐸𝑦|𝑛𝑗,𝑘+1/2,𝑙 −

∆𝑡/∆𝑥

1 + 𝜎𝑥∆𝑡/2

(︁
𝐻𝑧|𝑛+1/2

𝑗+1/2,𝑘+1/2,𝑙 −𝐻𝑧|𝑛+1/2
𝑗−1/2,𝑘+1/2,𝑙

)︁
𝐻𝑧𝑥|𝑛+3/2

𝑗+1/2,𝑘+1/2,𝑙 =

(︂
1 − 𝜎*

𝑥∆𝑡/2

1 + 𝜎*
𝑥∆𝑡/2

)︂
𝐻𝑧𝑥|𝑛𝑗+1/2,𝑘+1/2,𝑙 −

∆𝑡/∆𝑥

1 + 𝜎*
𝑥∆𝑡/2

(︁
𝐸𝑦|𝑛+1

𝑗+1,𝑘+1/2,𝑙 − 𝐸𝑦|𝑛+1
𝑗,𝑘+1/2,𝑙

)︁
𝐻𝑧𝑦|𝑛+3/2

𝑗+1/2,𝑘+1/2,𝑙 =

(︂
1 − 𝜎*

𝑦∆𝑡/2

1 + 𝜎*
𝑦∆𝑡/2

)︂
𝐻𝑧𝑦|𝑛𝑗+1/2,𝑘+1/2,𝑙 +

∆𝑡/∆𝑦

1 + 𝜎*
𝑦∆𝑡/2

(︁
𝐸𝑥|𝑛+1

𝑗+1/2,𝑘+1,𝑙 − 𝐸𝑥|𝑛+1
𝑗+1/2,𝑘,𝑙

)︁
𝐻𝑧 =𝐻𝑧𝑥 +𝐻𝑧𝑦

𝐸𝑥|𝑛+1
𝑗+1/2,𝑘,𝑙 =𝑒−𝜎𝑦Δ𝑡𝐸𝑥|𝑛𝑗+1/2,𝑘,𝑙 +

1 − 𝑒−𝜎𝑦Δ𝑡

𝜎𝑦∆𝑦

(︁
𝐻𝑧|𝑛+1/2

𝑗+1/2,𝑘+1/2,𝑙 −𝐻𝑧|𝑛+1/2
𝑗+1/2,𝑘−1/2,𝑙

)︁
𝐸𝑦|𝑛+1

𝑗,𝑘+1/2,𝑙 =𝑒−𝜎𝑥Δ𝑡𝐸𝑦|𝑛𝑗,𝑘+1/2,𝑙 −
1 − 𝑒−𝜎𝑥Δ𝑡

𝜎𝑥∆𝑥

(︁
𝐻𝑧|𝑛+1/2

𝑗+1/2,𝑘+1/2,𝑙 −𝐻𝑧|𝑛+1/2
𝑗−1/2,𝑘+1/2,𝑙

)︁
𝐻𝑧𝑥|𝑛+3/2

𝑗+1/2,𝑘+1/2,𝑙 =𝑒−𝜎*
𝑥Δ𝑡𝐻𝑧𝑥|𝑛𝑗+1/2,𝑘+1/2,𝑙 −

1 − 𝑒−𝜎*
𝑥Δ𝑡

𝜎*
𝑥∆𝑥

(︁
𝐸𝑦|𝑛+1

𝑗+1,𝑘+1/2,𝑙 − 𝐸𝑦|𝑛+1
𝑗,𝑘+1/2,𝑙

)︁
𝐻𝑧𝑦|𝑛+3/2

𝑗+1/2,𝑘+1/2,𝑙 =𝑒−𝜎*
𝑦Δ𝑡𝐻𝑧𝑦|𝑛𝑗+1/2,𝑘+1/2,𝑙 +

1 − 𝑒−𝜎*
𝑦Δ𝑡

𝜎*
𝑦∆𝑦

(︁
𝐸𝑥|𝑛+1

𝑗+1/2,𝑘+1,𝑙 − 𝐸𝑥|𝑛+1
𝑗+1/2,𝑘,𝑙

)︁
𝐻𝑧 =𝐻𝑧𝑥 +𝐻𝑧𝑦

𝐸𝑥|𝑛+1
𝑗+1/2,𝑘,𝑙 =𝑒−𝜎𝑦Δ𝑡𝐸𝑥|𝑛𝑗+1/2,𝑘,𝑙 +

1 − 𝑒−𝜎𝑦Δ𝑡

𝜎𝑦∆𝑦

𝑐𝑦
𝑐

(︁
𝐻𝑧|𝑛+1/2

𝑗+1/2,𝑘+1/2,𝑙 −𝐻𝑧|𝑛+1/2
𝑗+1/2,𝑘−1/2,𝑙

)︁
𝐸𝑦|𝑛+1

𝑗,𝑘+1/2,𝑙 =𝑒−𝜎𝑥Δ𝑡𝐸𝑦|𝑛𝑗,𝑘+1/2,𝑙 −
1 − 𝑒−𝜎𝑥Δ𝑡

𝜎𝑥∆𝑥

𝑐𝑥
𝑐

(︁
𝐻𝑧|𝑛+1/2

𝑗+1/2,𝑘+1/2,𝑙 −𝐻𝑧|𝑛+1/2
𝑗−1/2,𝑘+1/2,𝑙

)︁
𝐻𝑧𝑥|𝑛+3/2

𝑗+1/2,𝑘+1/2,𝑙 =𝑒−𝜎*
𝑥Δ𝑡𝐻𝑧𝑥|𝑛𝑗+1/2,𝑘+1/2,𝑙 −

1 − 𝑒−𝜎*
𝑥Δ𝑡

𝜎*
𝑥∆𝑥

𝑐*𝑥
𝑐

(︁
𝐸𝑦|𝑛+1

𝑗+1,𝑘+1/2,𝑙 − 𝐸𝑦|𝑛+1
𝑗,𝑘+1/2,𝑙

)︁
𝐻𝑧𝑦|𝑛+3/2

𝑗+1/2,𝑘+1/2,𝑙 =𝑒−𝜎*
𝑦Δ𝑡𝐻𝑧𝑦|𝑛𝑗+1/2,𝑘+1/2,𝑙 +

1 − 𝑒−𝜎*
𝑦Δ𝑡

𝜎*
𝑦∆𝑦

𝑐*𝑦
𝑐

(︁
𝐸𝑥|𝑛+1

𝑗+1/2,𝑘+1,𝑙 − 𝐸𝑥|𝑛+1
𝑗+1/2,𝑘,𝑙

)︁
𝐻𝑧 =𝐻𝑧𝑥 +𝐻𝑧𝑦

𝑐𝑥 =𝑐𝑒−𝜎𝑥Δ𝑡 𝜎𝑥∆𝑥

1 − 𝑒−𝜎𝑥Δ𝑡

𝑐𝑦 =𝑐𝑒−𝜎𝑦Δ𝑡 𝜎𝑦∆𝑦

1 − 𝑒−𝜎𝑦Δ𝑡

𝑐*𝑥 =𝑐𝑒−𝜎*
𝑥Δ𝑡 𝜎*

𝑥∆𝑥

1 − 𝑒−𝜎*
𝑥Δ𝑡

𝑐*𝑦 =𝑐𝑒−𝜎*
𝑦Δ𝑡

𝜎*
𝑦∆𝑦

1 − 𝑒−𝜎*
𝑦Δ𝑡

𝐸𝑥|𝑛+1
𝑗+1/2,𝑘,𝑙 =𝑒−𝜎𝑦Δ𝑡

[︂
𝐸𝑥|𝑛𝑗+1/2,𝑘,𝑙 +

∆𝑡

∆𝑦

(︁
𝐻𝑧|𝑛+1/2

𝑗+1/2,𝑘+1/2,𝑙 −𝐻𝑧|𝑛+1/2
𝑗+1/2,𝑘−1/2,𝑙

)︁]︂
𝐸𝑦|𝑛+1

𝑗,𝑘+1/2,𝑙 =𝑒−𝜎𝑥Δ𝑡

[︂
𝐸𝑦|𝑛𝑗,𝑘+1/2,𝑙 −

∆𝑡

∆𝑥

(︁
𝐻𝑧|𝑛+1/2

𝑗+1/2,𝑘+1/2,𝑙 −𝐻𝑧|𝑛+1/2
𝑗−1/2,𝑘+1/2,𝑙

)︁]︂
𝐻𝑧𝑥|𝑛+3/2

𝑗+1/2,𝑘+1/2,𝑙 =𝑒−𝜎*
𝑥Δ𝑡

[︂
𝐻𝑧𝑥|𝑛𝑗+1/2,𝑘+1/2,𝑙 −

∆𝑡

∆𝑥

(︁
𝐸𝑦|𝑛+1

𝑗+1,𝑘+1/2,𝑙 − 𝐸𝑦|𝑛+1
𝑗,𝑘+1/2,𝑙

)︁]︂
𝐻𝑧𝑦|𝑛+3/2

𝑗+1/2,𝑘+1/2,𝑙 =𝑒−𝜎*
𝑦Δ𝑡

[︂
𝐻𝑧𝑦|𝑛𝑗+1/2,𝑘+1/2,𝑙 +

∆𝑡

∆𝑦

(︁
𝐸𝑥|𝑛+1

𝑗+1/2,𝑘+1,𝑙 − 𝐸𝑥|𝑛+1
𝑗+1/2,𝑘,𝑙

)︁]︂
𝐻𝑧 =𝐻𝑧𝑥 +𝐻𝑧𝑦
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𝐸𝑥|𝑛+1
𝑗+1/2,𝑘,𝑙 =𝐸𝑥|𝑛𝑗+1/2,𝑘,𝑙 +

∆𝑡

∆𝑦

(︁
𝐻𝑧|𝑛+1/2

𝑗+1/2,𝑘+1/2,𝑙 −𝐻𝑧|𝑛+1/2
𝑗+1/2,𝑘−1/2,𝑙

)︁
𝐸𝑦|𝑛+1

𝑗,𝑘+1/2,𝑙 =𝐸𝑦|𝑛𝑗,𝑘+1/2,𝑙 −
∆𝑡

∆𝑥

(︁
𝐻𝑧|𝑛+1/2

𝑗+1/2,𝑘+1/2,𝑙 −𝐻𝑧|𝑛+1/2
𝑗−1/2,𝑘+1/2,𝑙

)︁
𝐻𝑧𝑥|𝑛+3/2

𝑗+1/2,𝑘+1/2,𝑙 =𝐻𝑧𝑥|𝑛𝑗+1/2,𝑘+1/2,𝑙 −
∆𝑡

∆𝑥

(︁
𝐸𝑦|𝑛+1

𝑗+1,𝑘+1/2,𝑙 − 𝐸𝑦|𝑛+1
𝑗,𝑘+1/2,𝑙

)︁
𝐻𝑧𝑦|𝑛+3/2

𝑗+1/2,𝑘+1/2,𝑙 =𝐻𝑧𝑦|𝑛𝑗+1/2,𝑘+1/2,𝑙 +
∆𝑡

∆𝑦

(︁
𝐸𝑥|𝑛+1

𝑗+1/2,𝑘+1,𝑙 − 𝐸𝑥|𝑛+1
𝑗+1/2,𝑘,𝑙

)︁
𝐻𝑧 =𝐻𝑧𝑥 +𝐻𝑧𝑦

5.6 Moving window and optimal Lorentz boosted frame

The simulations of plasma accelerators from first principles are extremely computationally intensive, due to the need
to resolve the evolution of a driver (laser or particle beam) and an accelerated particle beam into a plasma structure
that is orders of magnitude longer and wider than the accelerated beam. As is customary in the modeling of particle
beam dynamics in standard particle accelerators, a moving window is commonly used to follow the driver, the wake
and the accelerated beam. This results in huge savings, by avoiding the meshing of the entire plasma that is orders of

magnitude longer than the other length scales of interest.

Fig. 5.7: [fig:PIC] A first principle simulation of a short driver beam (laser or charged particles) propagating through
a plasma that is orders of magnitude longer necessitates a very large number of time steps. Recasting the simulation
in a frame of reference that is moving close to the speed of light in the direction of the driver beam leads to simulating
a driver beam that appears longer propagating through a plasma that appears shorter than in the laboratory. Thus, this
relativistic transformation of space and time reduces the disparity of scales, and thereby the number of time steps to
complete the simulation, by orders of magnitude.

Even using a moving window, however, a full PIC simulation of a plasma accelerator can be extraordinarily
demanding computationally, as many time steps are needed to resolve the crossing of the short driver beam with the
plasma column. As it turns out, choosing an optimal frame of reference that travels close to the speed of light in the
direction of the laser or particle beam (as opposed to the usual choice of the laboratory frame) enables speedups by
orders of magnitude (Vay 2007; J -L. Vay et al. 2011). This is a result of the properties of Lorentz contraction and
dilation of space and time. In the frame of the laboratory, a very short driver (laser or particle) beam propagates

through a much longer plasma column, necessitating millions to tens of millions of time steps for parameters in the
range of the BELLA or FACET-II experiments. As sketched in Fig. [fig:PIC], in a frame moving with the driver

beam in the plasma at velocity 𝑣 = 𝛽𝑐 (where 𝑐 is the speed of light in vacuum), the beam length is now elongated by
≈ (1 + 𝛽)𝛾 while the plasma contracts by 𝛾 (where 𝛾 = 1/

√︀
1 − 𝛽2 is the relativistic factor associated with the

frame velocity). The number of time steps that is needed to simulate a “longer” beam through a “shorter” plasma is
now reduced by up to ≈ (1 + 𝛽)𝛾2 (a detailed derivation of the speedup is given below).

The modeling of a plasma acceleration stage in a boosted frame involves the fully electromagnetic modeling of a
plasma propagating at near the speed of light, for which Numerical Cerenkov (Boris and Lee 1973; Haber et al. 1973)
is a potential issue, as explained in more details below. In addition, for a frame of reference moving in the direction
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of the accelerated beam (or equivalently the wake of the laser), waves emitted by the plasma in the forward direction
expand while the ones emitted in the backward direction contract, following the properties of the Lorentz

transformation. If one had to resolve both forward and backward propagating waves emitted from the plasma, there
would be no gain in selecting a frame different from the laboratory frame. However, the physics of interest for a laser

wakefield is the laser driving the wake, the wake, and the accelerated beam. Backscatter is weak in the short-pulse
regime, and does not interact as strongly with the beam as do the forward propagating waves which stay in phase for

a long period. It is thus often assumed that the backward propagating waves can be neglected in the modeling of
plasma accelerator stages. The accuracy of this assumption has been demonstrated by comparison between explicit
codes which include both forward and backward waves and envelope or quasistatic codes which neglect backward

waves (Geddes et al. 2008; Geddes et al. 2009; Cowan et al. 2009).

5.6.1 Theoretical speedup dependency with the frame boost

The derivation that is given here reproduces the one given in (J -L. Vay et al. 2011), where the obtainable speedup is
derived as an extension of the formula that was derived earlier(Vay 2007), taking in addition into account the group

velocity of the laser as it traverses the plasma.

Assuming that the simulation box is a fixed number of plasma periods long, which implies the use (which is standard)
of a moving window following the wake and accelerated beam, the speedup is given by the ratio of the time taken by

the laser pulse and the plasma to cross each other, divided by the shortest time scale of interest, that is the laser
period. To first order, the wake velocity 𝑣𝑤 is set by the 1D group velocity of the laser driver, which in the linear (low

intensity) limit, is given by (Esarey, Schroeder, and Leemans 2009):

𝑣𝑤/𝑐 = 𝛽𝑤 =

(︃
1 −

𝜔2
𝑝

𝜔2

)︃1/2

where 𝜔𝑝 =
√︀

(𝑛𝑒𝑒2)/(𝜖0𝑚𝑒) is the plasma frequency, 𝜔 = 2𝜋𝑐/𝜆 is the laser frequency, 𝑛𝑒 is the plasma density, 𝜆
is the laser wavelength in vacuum, 𝜖0 is the permittivity of vacuum, 𝑐 is the speed of light in vacuum, and 𝑒 and 𝑚𝑒

are respectively the charge and mass of the electron.

In practice, the runs are typically stopped when the last electron beam macro-particle exits the plasma, and a measure
of the total time of the simulation is then given by

𝑇 =
𝐿+ 𝜂𝜆𝑝
𝑣𝑤 − 𝑣𝑝

where 𝜆𝑝 ≈ 2𝜋𝑐/𝜔𝑝 is the wake wavelength, 𝐿 is the plasma length, 𝑣𝑤 and 𝑣𝑝 = 𝛽𝑝𝑐 are respectively the velocity of
the wake and of the plasma relative to the frame of reference, and 𝜂 is an adjustable parameter for taking into account
the fraction of the wake which exited the plasma at the end of the simulation. For a beam injected into the 𝑛𝑡ℎ bucket,
𝜂 would be set to 𝑛− 1/2. If positrons were considered, they would be injected half a wake period ahead of the

location of the electrons injection position for a given period, and one would have 𝜂 = 𝑛− 1. The numerical cost 𝑅𝑡

scales as the ratio of the total time to the shortest timescale of interest, which is the inverse of the laser frequency, and
is thus given by

𝑅𝑡 =
𝑇𝑐

𝜆
=

(𝐿+ 𝜂𝜆𝑝)

(𝛽𝑤 − 𝛽𝑝)𝜆

In the laboratory, 𝑣𝑝 = 0 and the expression simplifies to

𝑅𝑙𝑎𝑏 =
𝑇𝑐

𝜆
=

(𝐿+ 𝜂𝜆𝑝)

𝛽𝑤𝜆
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In a frame moving at 𝛽𝑐, the quantities become

𝜆*𝑝 = 𝜆𝑝/ [𝛾 (1 − 𝛽𝑤𝛽)]

𝐿* = 𝐿/𝛾

𝜆* = 𝛾 (1 + 𝛽)𝜆

𝛽*
𝑤 = (𝛽𝑤 − 𝛽) / (1 − 𝛽𝑤𝛽)

𝑣*𝑝 = −𝛽𝑐

𝑇 * =
𝐿* + 𝜂𝜆*𝑝
𝑣*𝑤 − 𝑣*𝑝

𝑅*
𝑡 =

𝑇 *𝑐

𝜆*
=

(︀
𝐿* + 𝜂𝜆*𝑝

)︀
(𝛽*

𝑤 + 𝛽)𝜆*

where 𝛾 = 1/
√︀

1 − 𝛽2.

The expected speedup from performing the simulation in a boosted frame is given by the ratio of 𝑅𝑙𝑎𝑏 and 𝑅*
𝑡

𝑆 =
𝑅𝑙𝑎𝑏

𝑅*
𝑡

=
(1 + 𝛽) (𝐿+ 𝜂𝜆𝑝)

(1 − 𝛽𝛽𝑤)𝐿+ 𝜂𝜆𝑝

We note that assuming that 𝛽𝑤 ≈ 1 (which is a valid approximation for most practical cases of interest) and that
𝛾 << 𝛾𝑤, this expression is consistent with the expression derived earlier (Vay 2007) for the laser-plasma

acceleration case, which states that 𝑅*
𝑡 = 𝛼𝑅𝑡/ (1 + 𝛽) with 𝛼 = (1 − 𝛽 + 𝑙/𝐿) / (1 + 𝑙/𝐿), where 𝑙 is the laser

length which is generally proportional to 𝜂𝜆𝑝, and 𝑆 = 𝑅𝑡/𝑅
*
𝑇 . However, higher values of 𝛾 are of interest for

maximum speedup, as shown below.

For intense lasers (𝑎 ∼ 1) typically used for acceleration, the energy gain is limited by dephasing (Schroeder et al.
2011), which occurs over a scale length 𝐿𝑑 ∼ 𝜆3𝑝/2𝜆

2. Acceleration is compromised beyond 𝐿𝑑 and in practice, the
plasma length is proportional to the dephasing length, i.e. 𝐿 = 𝜉𝐿𝑑. In most cases, 𝛾2𝑤 >> 1, which allows the

approximations 𝛽𝑤 ≈ 1 − 𝜆2/2𝜆2𝑝, and 𝐿 = 𝜉𝜆3𝑝/2𝜆
2 ≈ 𝜉𝛾2𝑤𝜆𝑝/2 >> 𝜂𝜆𝑝, so that Eq.([Eq_scaling1d0]) becomes

𝑆 = (1 + 𝛽)
2
𝛾2

𝜉𝛾2𝑤
𝜉𝛾2𝑤 + (1 + 𝛽) 𝛾2 (𝜉𝛽/2 + 2𝜂)

For low values of 𝛾, i.e. when 𝛾 << 𝛾𝑤, Eq.([Eq_scaling1d]) reduces to

𝑆𝛾<<𝛾𝑤
= (1 + 𝛽)

2
𝛾2

Conversely, if 𝛾 → ∞, Eq.([Eq_scaling1d]) becomes

𝑆𝛾→∞ =
4

1 + 4𝜂/𝜉
𝛾2𝑤

Finally, in the frame of the wake, i.e. when 𝛾 = 𝛾𝑤, assuming that 𝛽𝑤 ≈ 1, Eq.([Eq_scaling1d]) gives

𝑆𝛾=𝛾𝑤 ≈ 2

1 + 2𝜂/𝜉
𝛾2𝑤

Since 𝜂 and 𝜉 are of order unity, and the practical regimes of most interest satisfy 𝛾2𝑤 >> 1, the speedup that is
obtained by using the frame of the wake will be near the maximum obtainable value given by

Eq.([Eq_scaling_gamma_inf]).

Note that without the use of a moving window, the relativistic effects that are at play in the time domain would also
be at play in the spatial domain (Vay 2007), and the 𝛾2 scaling would transform to 𝛾4. Hence, it is important to use a

moving window even in simulations in a Lorentz boosted frame. For very high values of the boosted frame, the
optimal velocity of the moving window may vanish (i.e. no moving window) or even reverse.
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5.6.2 Numerical Stability and alternate formulation in a Galilean frame

The numerical Cherenkov instability (NCI) (Godfrey 1974) is the most serious numerical instability affecting
multidimensional PIC simulations of relativistic particle beams and streaming plasmas (Martins et al. 2010; Vay et al.

2010; J L Vay et al. 2011; Sironi and Spitkovsky 2011; Godfrey and Vay 2013; Xu et al. 2013). It arises from
coupling between possibly numerically distorted electromagnetic modes and spurious beam modes, the latter due to

the mismatch between the Lagrangian treatment of particles and the Eulerian treatment of fields (Godfrey 1975).

In recent papers the electromagnetic dispersion relations for the numerical Cherenkov instability were derived and
solved for both FDTD (Godfrey and Vay 2013; Brendan B. Godfrey and Vay 2014) and PSATD (Brendan B.

Godfrey, Vay, and Haber 2014a, 2014b) algorithms.

Several solutions have been proposed to mitigate the NCI (Brendan B Godfrey, Vay, and Haber 2014; Brendan B.
Godfrey, Vay, and Haber 2014b, 2014a; Godfrey and Vay 2015; Yu, Xu, Decyk, et al. 2015; Yu, Xu, Tableman, et al.

2015). Although these solutions efficiently reduce the numerical instability, they typically introduce either strong
smoothing of the currents and fields, or arbitrary numerical corrections, which are tuned specifically against the NCI
and go beyond the natural discretization of the underlying physical equation. Therefore, it is sometimes unclear to

what extent these added corrections could impact the physics at stake for a given resolution.

For instance, NCI-specific corrections include periodically smoothing the electromagnetic field components (Martins
et al. 2010), using a special time step (Vay et al. 2010; J L Vay et al. 2011) or applying a wide-band smoothing of the

current components (Vay et al. 2010; J L Vay et al. 2011; J. Vay et al. 2011). Another set of mitigation methods
involve scaling the deposited currents by a carefully-designed wavenumber-dependent factor (Brendan B. Godfrey
and Vay 2014; Brendan B. Godfrey, Vay, and Haber 2014b) or slightly modifying the ratio of electric and magnetic

fields (𝐸/𝐵) before gathering their value onto the macroparticles (Brendan B. Godfrey, Vay, and Haber 2014a;
Godfrey and Vay 2015). Yet another set of NCI-specific corrections (Yu, Xu, Decyk, et al. 2015; Yu, Xu, Tableman,
et al. 2015) consists in combining a small timestep ∆𝑡, a sharp low-pass spatial filter, and a spectral or high-order

scheme that is tuned so as to create a small, artificial “bump” in the dispersion relation (Yu, Xu, Decyk, et al. 2015).
While most mitigation methods have only been applied to Cartesian geometry, this last set of methods ((Yu, Xu,
Decyk, et al. 2015; Yu, Xu, Tableman, et al. 2015)) has the remarkable property that it can be applied (Yu, Xu,

Tableman, et al. 2015) to both Cartesian geometry and quasi-cylindrical geometry (i.e. cylindrical geometry with
azimuthal Fourier decomposition (Lifschitz et al. 2009; Davidson et al. 2015; R. Lehe et al. 2016)). However, the use

of a small timestep proportionally slows down the progress of the simulation, and the artificial “bump” is again an
arbitrary correction that departs from the underlying physics.

A new scheme was recently proposed, in (Kirchen et al. 2016; Lehe et al. 2016), which completely eliminates the
NCI for a plasma drifting at a uniform relativistic velocity – with no arbitrary correction – by simply integrating the

PIC equations in Galilean coordinates (also known as comoving coordinates). More precisely, in the new method, the
Maxwell equations in Galilean coordinates are integrated analytically, using only natural hypotheses, within the

PSATD framework (Pseudo-Spectral-Analytical-Time-Domain (Haber et al. 1973; Vay, Haber, and Godfrey 2013)).

The idea of the proposed scheme is to perform a Galilean change of coordinates, and to carry out the simulation in
the new coordinates:

𝑥′ = 𝑥− 𝑣𝑔𝑎𝑙𝑡

where 𝑥 = 𝑥𝑢𝑥 + 𝑦𝑢𝑦 + 𝑧 𝑢𝑧 and 𝑥′ = 𝑥′ 𝑢𝑥 + 𝑦′ 𝑢𝑦 + 𝑧′ 𝑢𝑧 are the position vectors in the standard and Galilean
coordinates respectively.

When choosing 𝑣𝑔𝑎𝑙 = 𝑣0, where 𝑣0 is the speed of the bulk of the relativistic plasma, the plasma does not move
with respect to the grid in the Galilean coordinates 𝑥′ – or, equivalently, in the standard coordinates 𝑥, the grid moves

along with the plasma. The heuristic intuition behind this scheme is that these coordinates should prevent the
discrepancy between the Lagrangian and Eulerian point of view, which gives rise to the NCI (Godfrey 1975).

An important remark is that the Galilean change of coordinates ([eq:change-var]) is a simple translation. Thus, when
used in the context of Lorentz-boosted simulations, it does of course preserve the relativistic dilatation of space and

time which gives rise to the characteristic computational speedup of the boosted-frame technique.
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Another important remark is that the Galilean scheme is not equivalent to a moving window (and in fact the Galilean
scheme can be independently combined with a moving window). Whereas in a moving window, gridpoints are added

and removed so as to effectively translate the boundaries, in the Galilean scheme the gridpoints themselves are not
only translated but in this case, the physical equations are modified accordingly. Most importantly, the assumed time
evolution of the current 𝐽 within one timestep is different in a standard PSATD scheme with moving window and in a

Galilean PSATD scheme (Lehe et al. 2016).

In the Galilean coordinates 𝑥′, the equations of particle motion and the Maxwell equations take the form

𝑑𝑥′

𝑑𝑡
=

𝑝

𝛾𝑚
− 𝑣𝑔𝑎𝑙

𝑑𝑝

𝑑𝑡
= 𝑞

(︂
𝐸 +

𝑝

𝛾𝑚
×𝐵

)︂
(︂
𝜕

𝜕𝑡
− 𝑣𝑔𝑎𝑙 ·∇′

)︂
𝐵 = −∇′ ×𝐸

1

𝑐2

(︂
𝜕

𝜕𝑡
− 𝑣𝑔𝑎𝑙 ·∇′

)︂
𝐸 = ∇′ ×𝐵 − 𝜇0𝐽

where ∇′ denotes a spatial derivative with respect to the Galilean coordinates 𝑥′.

Integrating these equations from 𝑡 = 𝑛∆𝑡 to 𝑡 = (𝑛+ 1)∆𝑡 results in the following update equations (see (Lehe et al.
2016) for the details of the derivation):

B̃𝑛+1 = 𝜃2𝐶B̃𝑛 − 𝜃2𝑆

𝑐𝑘
𝑖𝑘 × Ẽ𝑛

+
𝜃𝜒1

𝜖0𝑐2𝑘2
𝑖𝑘 × J̃𝑛+1/2

Ẽ𝑛+1 = 𝜃2𝐶Ẽ𝑛 +
𝜃2𝑆

𝑘
𝑐𝑖𝑘 × B̃𝑛

+
𝑖𝜈𝜃𝜒1 − 𝜃2𝑆

𝜖0𝑐𝑘
J̃𝑛+1/2

− 1

𝜖0𝑘2
(︀
𝜒2 𝜌

𝑛+1 − 𝜃2𝜒3 𝜌
𝑛
)︀
𝑖𝑘

where we used the short-hand notations Ẽ𝑛 ≡ Ẽ(𝑘, 𝑛∆𝑡), B̃𝑛 ≡ B̃(𝑘, 𝑛∆𝑡) as well as:

𝐶 = cos(𝑐𝑘∆𝑡) 𝑆 = sin(𝑐𝑘∆𝑡) 𝑘 = |𝑘|

𝜈 =
𝑘 · 𝑣𝑔𝑎𝑙

𝑐𝑘
𝜃 = 𝑒𝑖𝑘·𝑣𝑔𝑎𝑙Δ𝑡/2 𝜃* = 𝑒−𝑖𝑘·𝑣𝑔𝑎𝑙Δ𝑡/2

𝜒1 =
1

1 − 𝜈2
(𝜃* − 𝐶𝜃 + 𝑖𝜈𝜃𝑆)

𝜒2 =
𝜒1 − 𝜃(1 − 𝐶)

𝜃* − 𝜃
𝜒3 =

𝜒1 − 𝜃*(1 − 𝐶)

𝜃* − 𝜃

Note that, in the limit 𝑣𝑔𝑎𝑙 = 0, ([eq:disc-maxwell1]) and ([eq:disc-maxwell2]) reduce to the standard PSATD
equations (Haber et al. 1973), as expected. As shown in (Kirchen et al. 2016; Lehe et al. 2016), the elimination of the

NCI with the new Galilean integration is verified empirically via PIC simulations of uniform drifting plasmas and
laser-driven plasma acceleration stages, and confirmed by a theoretical analysis of the instability.
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5.7 Inputs and outputs

Initialization of the plasma columns and drivers (laser or particle beam) is performed via the specification of
multidimensional functions that describe the initial state with, if needed, a time dependence, or from reconstruction
of distributions based on experimental data. Care is needed when initializing quantities in parallel to avoid double

counting and ensure smoothness of the distributions at the interface of computational domains. When the sum of the
initial distributions of charged particles is not charge neutral, initial fields are computed using generally a static
approximation with Poisson solves accompanied by proper relativistic scalings (Vay 2008; Cowan et al. 2013).

Outputs include dumps of particle and field quantities at regular intervals, histories of particle distributions moments,
spectra, etc, and plots of the various quantities. In parallel simulations, the diagnostic subroutines need to handle
additional complexity from the domain decomposition, as well as large amount of data that may necessitate data

reduction in some form before saving to disk.
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Simulations in a Lorentz boosted frame require additional considerations, as described below.

5.7.1 Inputs and outputs in a boosted frame simulation

Fig. 5.8: (top) Snapshot of a particle beam showing “frozen” (grey spheres) and “active” (colored spheres) macropar-
ticles traversing the injection plane (red rectangle). (bottom) Snapshot of the beam macroparticles (colored spheres)
passing through the background of electrons (dark brown streamlines) and the diagnostic stations (red rectangles).
The electrons, the injection plane and the diagnostic stations are fixed in the laboratory plane, and are thus counter-
propagating to the beam in a boosted frame.

[Fig_inputoutput]

The input and output data are often known from, or compared to, experimental data. Thus, calculating in a frame
other than the laboratory entails transformations of the data between the calculation frame and the laboratory frame.
This section describes the procedures that have been implemented in the Particle-In-Cell framework Warp (Grote et
al. 2005) to handle the input and output of data between the frame of calculation and the laboratory frame (Vay et al.
2011). Simultaneity of events between two frames is valid only for a plane that is perpendicular to the relative motion
of the frame. As a result, the input/output processes involve the input of data (particles or fields) through a plane, as

well as output through a series of planes, all of which are perpendicular to the direction of the relative velocity
between the frame of calculation and the other frame of choice.

Input in a boosted frame simulation

Particles -

Particles are launched through a plane using a technique that is generic and applies to Lorentz boosted frame
simulations in general, including plasma acceleration, and is illustrated using the case of a positively charged particle

beam propagating through a background of cold electrons in an assumed continuous transverse focusing system,
leading to a well-known growing transverse “electron cloud” instability (Vay 2007). In the laboratory frame, the

electron background is initially at rest and a moving window is used to follow the beam progression. Traditionally,
the beam macroparticles are initialized all at once in the window, while background electron macroparticles are

created continuously in front of the beam on a plane that is perpendicular to the beam velocity. In a frame moving at
some fraction of the beam velocity in the laboratory frame, the beam initial conditions at a given time in the
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calculation frame are generally unknown and one must initialize the beam differently. However, it can be taken
advantage of the fact that the beam initial conditions are often known for a given plane in the laboratory, either

directly, or via simple calculation or projection from the conditions at a given time in the labortory frame. Given the
position and velocity {𝑥, 𝑦, 𝑧, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧} for each beam macroparticle at time 𝑡 = 0 for a beam moving at the average

velocity 𝑣𝑏 = 𝛽𝑏𝑐 (where 𝑐 is the speed of light) in the laboratory, and using the standard synchronization
(𝑧 = 𝑧′ = 0 at 𝑡 = 𝑡′ = 0) between the laboratory and the calculation frames, the procedure for transforming the

beam quantities for injection in a boosted frame moving at velocity 𝛽𝑐 in the laboratory is as follows (the superscript
′ relates to quantities known in the boosted frame while the superscript * relates to quantities that are know at a given

longitudinal position 𝑧* but different times of arrival):

1. project positions at 𝑧* = 0 assuming ballistic propagation

𝑡* = (𝑧 − 𝑧) /𝑣𝑧

𝑥* = 𝑥− 𝑣𝑥𝑡
*

𝑦* = 𝑦 − 𝑣𝑦𝑡
*

𝑧* = 0

the velocity components being left unchanged,

2. apply Lorentz transformation from laboratory frame to boosted frame

𝑡′* = −𝛾𝑡*

𝑥′* = 𝑥*

𝑦′* = 𝑦*

𝑧′* = 𝛾𝛽𝑐𝑡*

𝑣′*𝑥 =
𝑣*𝑥

𝛾 (1 − 𝛽𝛽𝑏)

𝑣′*𝑦 =
𝑣*𝑦

𝛾 (1 − 𝛽𝛽𝑏)

𝑣′*𝑧 =
𝑣*𝑧 − 𝛽𝑐

1 − 𝛽𝛽𝑏

where 𝛾 = 1/
√︀

1 − 𝛽2. With the knowledge of the time at which each beam macroparticle crosses the plane
into consideration, one can inject each beam macroparticle in the simulation at the appropriate location and
time.

3. synchronize macroparticles in boosted frame, obtaining their positions at a fixed 𝑡′ = 0 (before any particle is
injected)

𝑧′ = 𝑧′* − 𝑣′*𝑧 𝑡
′*

This additional step is needed for setting the electrostatic or electromagnetic fields at the plane of injection.
In a Particle-In-Cell code, the three-dimensional fields are calculated by solving the Maxwell equations (or
static approximation like Poisson, Darwin or other (Vay 2008)) on a grid on which the source term is obtained
from the macroparticles distribution. This requires generation of a three-dimensional representation of the beam
distribution of macroparticles at a given time before they cross the injection plane at 𝑧′*. This is accomplished
by expanding the beam distribution longitudinally such that all macroparticles (so far known at different times
of arrival at the injection plane) are synchronized to the same time in the boosted frame. To keep the beam
shape constant, the particles are “frozen” until they cross that plane: the three velocity components and the
two position components perpendicular to the boosted frame velocity are kept constant, while the remaining
position component is advanced at the average beam velocity. As particles cross the plane of injection, they
become regular “active” particles with full 6-D dynamics.

Figure [Fig_inputoutput] (top) shows a snapshot of a beam that has passed partly through the injection plane. As the
frozen beam macroparticles pass through the injection plane (which moves opposite to the beam in the boosted

frame), they are converted to “active” macroparticles. The charge or current density is accumulated from the active
and the frozen particles, thus ensuring that the fields at the plane of injection are consistent.
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Laser -

Similarly to the particle beam, the laser is injected through a plane perpendicular to the axis of propagation of the
laser (by default 𝑧). The electric field 𝐸⊥ that is to be emitted is given by the formula

𝐸⊥ (𝑥, 𝑦, 𝑡) = 𝐸0𝑓 (𝑥, 𝑦, 𝑡) sin [𝜔𝑡+ 𝜑 (𝑥, 𝑦, 𝜔)]

where 𝐸0 is the amplitude of the laser electric field, 𝑓 (𝑥, 𝑦, 𝑡) is the laser envelope, 𝜔 is the laser frequency,
𝜑 (𝑥, 𝑦, 𝜔) is a phase function to account for focusing, defocusing or injection at an angle, and 𝑡 is time. By default,

the laser envelope is a three-dimensional gaussian of the form

𝑓 (𝑥, 𝑦, 𝑡) = 𝑒−(𝑥2/2𝜎2
𝑥+𝑦2/2𝜎2

𝑦+𝑐2𝑡2/2𝜎2
𝑧)

where 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧 are the dimensions of the laser pulse; or it can be defined arbitrarily by the user at runtime. If
𝜑 (𝑥, 𝑦, 𝜔) = 0, the laser is injected at a waist and parallel to the axis 𝑧.

If, for convenience, the injection plane is moving at constant velocity 𝛽𝑠𝑐, the formula is modified to take the Doppler
effect on frequency and amplitude into account and becomes

𝐸⊥ (𝑥, 𝑦, 𝑡) = (1 − 𝛽𝑠)𝐸0𝑓 (𝑥, 𝑦, 𝑡)

× sin [(1 − 𝛽𝑠)𝜔𝑡+ 𝜑 (𝑥, 𝑦, 𝜔)] .

The injection of a laser of frequency 𝜔 is considered for a simulation using a boosted frame moving at 𝛽𝑐 with
respect to the laboratory. Assuming that the laser is injected at a plane that is fixed in the laboratory, and thus moving

at 𝛽𝑠 = −𝛽 in the boosted frame, the injection in the boosted frame is given by

𝐸⊥ (𝑥′, 𝑦′, 𝑡′) = (1 − 𝛽𝑠)𝐸
′
0𝑓 (𝑥′, 𝑦′, 𝑡′)

× sin [(1 − 𝛽𝑠)𝜔
′𝑡′ + 𝜑 (𝑥′, 𝑦′, 𝜔′)]

= (𝐸0/𝛾) 𝑓 (𝑥′, 𝑦′, 𝑡′)

× sin [𝜔𝑡′/𝛾 + 𝜑 (𝑥′, 𝑦′, 𝜔′)]

since 𝐸′
0/𝐸0 = 𝜔′/𝜔 = 1/ (1 + 𝛽) 𝛾.

The electric field is then converted into currents that get injected via a 2D array of macro-particles, with one positive
and one dual negative macro-particle for each array cell in the plane of injection, whose weights and motion are

governed by 𝐸⊥ (𝑥′, 𝑦′, 𝑡′). Injecting using this dual array of macroparticles offers the advantage of automatically
including the longitudinal component that arises from emitting into a boosted frame, and to automatically verify the
discrete Gauss’ law thanks to using charge conserving (e.g. Esirkepov) current deposition scheme (Esirkepov 2001).

Output in a boosted frame simulation

Some quantities, e.g. charge or dimensions perpendicular to the boost velocity, are Lorentz invariant. Those
quantities are thus readily available from standard diagnostics in the boosted frame calculations. Quantities that do

not fall in this category are recorded at a number of regularly spaced “stations”, immobile in the laboratory frame, at
a succession of time intervals to record data history, or averaged over time. A visual example is given on Fig.

[Fig_inputoutput] (bottom). Since the space-time locations of the diagnostic grids in the laboratory frame generally
do not coincide with the space-time positions of the macroparticles and grid nodes used for the calculation in a

boosted frame, some interpolation is performed at runtime during the data collection process. As a complement or an
alternative, selected particle or field quantities can be dumped at regular intervals and quantities are reconstructed in
the laboratory frame during a post-processing phase. The choice of the methods depends on the requirements of the

diagnostics and particular implementations.

Cowan, Benjamin M, David L Bruhwiler, John R Cary, Estelle Cormier-Michel, and Cameron G R Geddes. 2013.
“Generalized algorithm for control of numerical dispersion in explicit time-domain electromagnetic simulations.”
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