
WarpX Documentation

WarpX collaboration

Mar 31, 2020

Contents

1 Building/installing WarpX 3

2 Running WarpX as an executable 7

3 Running WarpX from Python 17

4 Visualizing the simulation results 19

5 Theoretical background 27

i

ii

WarpX Documentation

Warning: This is an alpha release of WarpX. The code is still in active development. Robustness and perfor-
mance may fluctuate at this stage. The input and output formats may evolve.

WarpX is an advanced electromagnetic Particle-In-Cell code.

It supports many features including:

• Perfectly-Matched Layers (PML)

• Boosted-frame simulations

• Mesh refinement

For details on the algorithms that WarpX implements, see the section Theoretical background.

In addition, WarpX is a highly-parallel and highly-optimized code and features hybrid OpenMP/MPI parallelization,
advanced vectorization techniques and load balancing capabilities.

In order to learn to use the code, please see the sections below:

Contents 1

WarpX Documentation

2 Contents

CHAPTER 1

Building/installing WarpX

WarpX can currently be built (and run) in two variants:

• as a compiled executable (run with the command line)

• as a Python package (run through a Python script)

Currently, for both of these options, the user needs to build the code from source.

1.1 Downloading the source code

Clone the source codes of WarpX, and its dependencies AMReX and PICSAR into one single directory (e.g.
warpx_directory):

mkdir warpx_directory
cd warpx_directory
git clone https://github.com/ECP-WarpX/WarpX.git
git clone https://bitbucket.org/berkeleylab/picsar.git
git clone https://github.com/AMReX-Codes/amrex.git

Then switch to the branch development of AMReX

cd amrex/
git checkout development
cd ..

1.2 Compiling WarpX as an executable

cd into the directory WarpX and type

make -j 4

3

WarpX Documentation

This will generate an executable file in the Bin directory.

Note: The compilation options are set in the file GNUmakefile. The default options correspond to an optimized
code for 3D geometry. You can modify the options in this file in order to (for instance):

• Use 2D geometry

• Disable OpenMP

• Profile or debug the code

• Choose a given compiler

For a description of these different options, see the corresponding page in the AMReX documentation.

Alternatively, instead of modifying the file GNUmakefile, you can directly pass the options in command line ; for
instance:

make -j 4 USE_OMP=FALSE

In order to clean a previously compiled version:

make realclean

1.3 Installing WarpX as a Python package

Type

make -j 4 USE_PYTHON_MAIN=TRUE

or edit the GNUmakefile and set USE_PYTHON_MAIN=TRUE, and type

make -j 4

This will compile the code, and install the Python bindings as a package (named pywarpx) in your standard Python
installation (i.e. in your site-packages directory). The note on compiler options from the previous section also
holds when compiling the Python package.

In case you do not have write permissions to the default Python installation (e.g. typical on computer clusters), use the
following command instead:

make -j 4 PYINSTALLOPTIONS=--user

In this case, you can also set the variable PYTHONUSERBASE to set the folder where pywarpx will be installed.

1.4 Advanced building instructions

1.4.1 Building the spectral solver

By default, the code is compiled with a finite-difference (FDTD) Maxwell solver. In order to run the code with a
spectral solver, you need to:

• Install (or load) an MPI-enabled version of FFTW. For instance, for Debian, this can be done with

4 Chapter 1. Building/installing WarpX

https://amrex-codes.github.io/amrex/BuildingAMReX.html#building-with-gnu-make

WarpX Documentation

apt-get install libfftw3-dev libfftw3-mpi-dev

• Set the environment variable FFTW_HOME to the path for FFTW. For instance, for Debian, this is done with

export FFTW_HOME=/usr/

• Set USE_PSATD=TRUE when compiling:

make -j 4 USE_PSATD=TRUE

1.4.2 Building WarpX for Cori (NERSC)

For the Cori cluster at NERSC, you need to type the following command when compiling:

Note: In order to compile the code with a spectral solver, type

module load cray-fftw

before typing any of the commands below, and add USE_PSATD=TRUE at the end of the command containing make.

In order to compile for the Haswell architecture:

• with the Intel compiler

make -j 16 COMP=intel

• with the GNU compiler

module swap PrgEnv-intel PrgEnv-gnu
make -j 16 COMP=gnu

In order to compile for the Knight’s Landing (KNL) architecture:

• with the Intel compiler

module swap craype-haswell craype-mic-knl
make -j 16 COMP=intel

• with the GNU compiler

module swap craype-haswell craype-mic-knl
module swap PrgEnv-intel PrgEnv-gnu
make -j 16 COMP=gnu

1.4.3 Building WarpX for Summit-dev (OLCF)

For the Summit-dev cluster at OLCF, use the following commands to download the source code, and switch to the
correct branch:

mkdir warpx_directory
cd warpx_directory

git clone https://github.com/ECP-WarpX/WarpX.git

(continues on next page)

1.4. Advanced building instructions 5

http://www.nersc.gov/users/computational-systems/cori/
https://www.olcf.ornl.gov/tag/summitdev/

WarpX Documentation

(continued from previous page)

cd WarpX
git checkout gpu
cd ..

git clone https://bitbucket.org/berkeleylab/picsar.git
cd picsar
git checkout gpu
cd ..

git clone https://github.com/AMReX-Codes/amrex.git
cd amrex
git checkout development
cd ..

Then, use the following set of commands to compile:

module load pgi
module load cuda
make

6 Chapter 1. Building/installing WarpX

CHAPTER 2

Running WarpX as an executable

2.1 How to run a new simulation

After compiling the code, the WarpX executable is stored in the folder warpx/Bin. (Its name starts with main but
depends on the compiler options.)

In order to run a new simulation:

• Create a new directory, where the simulation will be run.

• Copy the executable to this directory:

cp warpx/Bin/<warpx_executable> <run_directory>/warpx.exe

where <warpx_executable> should be replaced by the actual name of the executable (see above) and
<run_directory> by the actual path to the run directory.

• Add an input file in the directory.

This file contains the numerical and physical parameters that define the situation to be simulated. Example input files
can be found in the section Example input files. The different parameters in these files are explained in the section
Input parameters.

• Run the executable:

mpirun -np <n_ranks> ./warpx.exe <input_file>

where <n_ranks> is the number of MPI ranks used, and <input_file> is the name of the input file.

2.2 Example input files

This section allows you to download input files that correspond to different physical situations. For a definition of
the different parameters that are set in these files, see the section Input parameters.

7

WarpX Documentation

2.2.1 Beam-driven acceleration

• 2D case

• 2D case in boosted frame

• 3D case in boosted frame

2.2.2 Laser-driven acceleration

• 2D case

• 2D case in boosted frame

• 3D case

2.2.3 Plasma mirror

2D case

2.2.4 Uniform plasma

2D case 3D case

2.3 Input parameters

Warning: This section is currently in development.

2.3.1 Overall simulation parameters

• max_step (integer) The number of PIC cycles to perform.

• warpx.gamma_boost (float) The Lorentz factor of the boosted frame in which the simulation is run. (The
corresponding Lorentz transformation is assumed to be along warpx.boost_direction.)

When using this parameter, some of the input parameters are automatically converted to the boosted frame.
(See the corresponding documentation of each input parameters.)

Note: For now, only the laser parameters will be converted.

• warpx.boost_direction (string: x, y or z) The direction of the Lorentz-transform for boosted-frame
simulations (The direction y cannot be used in 2D simulations.)

2.3.2 Setting up the field mesh

• amr.n_cell (2 integers in 2D, 3 integers in 3D) The number of grid points along each direction (on the
coarsest level)

8 Chapter 2. Running WarpX as an executable

WarpX Documentation

• amr.max_level (integer) When using mesh refinement, the number of refinement levels that will be used.

Use 0 in order to disable mesh refinement.

• geometry.is_periodic (2 integers in 2D, 3 integers in 3D) Whether the boundary conditions are peri-
odic, in each direction.

For each direction, use 1 for periodic conditions, 0 otherwise.

• geometry.prob_lo and geometry.prob_hi (2 floats in 2D, 3 integers in 3D; in meters) The extent
of the full simulation box. This box is rectangular, and thus its extent is given here by the coordinates
of the lower corner (geometry.prob_lo) and upper corner (geometry.prob_hi).

• warpx.fine_tag_lo and warpx.fine_tag_hi (2 floats in 2D, 3 integers in 3D; in meters) When
using static mesh refinement with 1 level, the extent of the refined patch. This patch is rectangular, and
thus its extent is given here by the coordinates of the lower corner (warpx.fine_tag_lo) and upper
corner (warpx.fine_tag_hi).

2.3.3 Distribution across MPI ranks and parallelization

• amr.max_grid_size (integer) Maximum allowable size of each subdomain (expressed in number of grid
points, in each direction). Each subdomain has its own ghost cells, and can be handled by a different MPI
rank ; several OpenMP threads can work simultaneously on the same subdomain.

If max_grid_size is such that the total number of subdomains is larger that the number of MPI ranks
used, than some MPI ranks will handle several subdomains, thereby providing additional flexibility for
load balancing.

When using mesh refinement, this number applies to the subdomains of the coarsest level, but also to any
of the finer level.

• warpx.load_balance_int (integer) How often WarpX should try to redistribute the work across MPI
ranks, in order to have better load balancing (expressed in number of PIC cycles inbetween two consecutive
attempts at redistributing the work). Use 0 to disable load_balancing.

When performing load balancing, WarpX measures the wall time for computational parts of the PIC cycle.
It then uses this data to decide how to redistribute the subdomains across MPI ranks. (Each subdomain is
unchanged, but its owner is changed in order to have better performance.) This relies on each MPI rank
handling several (in fact many) subdomains (see max_grid_size).

• warpx.load_balance_with_sfc (0 or 1) optional (default 0) If this is 1: use a Space-Filling Curve
(SFC) algorithm in order to perform load-balancing of the simulation. If this is 0: the Knapsack algorithm
is used instead.

• warpx.do_dynamic_scheduling (0 or 1) optional (default 1) Whether to activate OpenMP dynamic
scheduling.

2.3.4 Math parser and user-defined constants

WarpX provides a math parser that reads expressions in the input file. It can be used to define the plasma density
profile, the plasma momentum distribution or the laser field (see below Particle initialization and Laser initialization).

The parser reads python-style expressions between double quotes, for instance "a0*x**2 * (1-y*1.e2) *
(x>0)" is a valid expression where a0 is a user-defined constant and x and y are variables. The factor (x>0)
is 1 where x>0 and 0 where x<=0. It allows the user to define functions by intervals. User-defined constants can be
used in parsed functions only (i.e., density_function(x,y,z) and field_function(x,y,t), see below).
They are specified with:

• constants.use_my_constants (bool) Whether to use user-defined constants.

2.3. Input parameters 9

WarpX Documentation

• constants.constant_names (strings, separated by spaces) A list of variables the user wants to define,
e.g., constants.constant_names = a0 n0.

• constants.constant_values (floats, sepatated by spaces) Values for the user-defined constants., e.g.,
constants.constant_values = 3. 1.e24.

2.3.5 Particle initialization

• particles.nspecies (int) The number of species that will be used in the simulation.

• particles.species_names (strings, separated by spaces) The name of each species. This is then used
in the rest of the input deck ; in this documentation we use <species_name> as a placeholder.

• particles.use_fdtd_nci_corr (0 or 1) Whether to activate the FDTD Numerical Cherenkov Insta-
bility corrector.

• particles.rigid_injected_species (strings, separated by spaces) List of species injected using
the rigid injection method. For species injected using this method, particles are translated along the
+z axis with constant velocity as long as their z coordinate verifies z<zinject_plane. When
z>zinject_plane, particles are pushed in a standard way, using the specified pusher.

• <species_name>.charge (float) The charge of one physical particle of this species.

• <species_name>.mass (float) The mass of one physical particle of this species.

• <species_name>.injection_style (string) Determines how the particles will be injected in the sim-
ulation. The options are:

– NUniformPerCell: injection with a fixed number of evenly-spaced particles per cell. This requires
the additional parameter <species_name>.num_particles_per_cell_each_dim.

– NRandomPerCell: injection with a fixed number of randomly-distributed particles per cell. This
requires the additional parameter <species_name>.num_particles_per_cell.

• <species_name>.profile (string) Density profile for this species. The options are:

– constant: Constant density profile within the box, or between <species_name>.xmin
and <species_name>.xmax (and same in all directions). This requires additional parameter
<species_name>.density. i.e., the plasma density in 𝑚−3.

– parse_density_function: the density is given by a function in the input file. It requires ad-
ditional argument <species_name>.density_function(x,y,z), which is a mathematical
expression for the density of the species, e.g. electrons.density_function(x,y,z) =
"n0+n0*x**2*1.e12" where n0 is a user-defined constant, see above. Note that using this den-
sity profile will turn warpx.serialize_ics to 1, which may slow down the simulation.

• <species_name>.momentum_distribution_type (string) Distribution of the normalized momen-
tum (u=p/mc) for this species. The options are:

– constant: constant momentum profile. This requires additional parameters <species_name>.
ux, <species_name>.uy and <species_name>.uz, the normalized momenta in the x, y and
z direction respectively.

– gaussian: gaussian momentum distribution in all 3 directions. This requires additional arguments
for the average momenta along each direction <species_name>.ux_m, <species_name>.
uy_m and <species_name>.uz_m as well as standard deviations along each direction
<species_name>.ux_th, <species_name>.uy_th and <species_name>.uz_th.

– radial_expansion: momentum depends on the radial coordinate linearly. This requires addi-
tional parameter u_over_r which is the slope.

10 Chapter 2. Running WarpX as an executable

WarpX Documentation

– parse_momentum_function: the momentum is given by a function in the input
file. It requires additional arguments <species_name>.momentum_function_ux(x,
y,z), <species_name>.momentum_function_uy(x,y,z) and <species_name>.
momentum_function_uz(x,y,z), which gives the distribution of each component of the mo-
mentum as a function of space. Note that using this momentum distribution type will turn warpx.
serialize_ics to 1, which may slow down the simulation.

• <species_name>.zinject_plane (float) Only read if <species_name> is in particles.
rigid_injected_species. Injection plane when using the rigid injection method. See
particles.rigid_injected_species above.

• <species_name>.rigid_avance (bool) Only read if <species_name> is in particles.
rigid_injected_species.

– If false, each particle is advanced with its own velocity vz until it reaches zinject_plane.

– If true, each particle is advanced with the average speed of the species vzbar until it reaches
zinject_plane.

• <species_name>.do_backward_injection (bool) Inject a backward-propagating beam to reduce
the effect of charge-separation fields when running in the boosted frame. See examples.

• warpx.serialize_ics (0 or 1) Whether or not to use OpenMP threading for particle initialization.

2.3.6 Laser initialization

• warpx.use_laser (0 or 1) Whether to activate the injection of a laser pulse in the simulation

• laser.position (3 floats in 3D and 2D ; in meters) The coordinates of one of the point of the antenna
that will emit the laser. The plane of the antenna is entirely defined by laser.position and laser.
direction.

laser.position also corresponds to the origin of the coordinates system for the laser tranverse profile.
For instance, for a Gaussian laser profile, the peak of intensity will be at the position given by laser.
position. This variable can thus be used to shift the position of the laser pulse transversally.

Note: In 2D, laser.position is still given by 3 numbers, but the second number is ignored.

When running a boosted-frame simulation, provide the value of laser.position in the laboratory
frame, and use warpx.gamma_boost to automatically perform the conversion to the boosted frame.
Note that, in this case, the laser antenna will be moving, in the boosted frame.

• laser.polarization (3 floats in 3D and 2D) The coordinates of a vector that points in the direction of
polarization of the laser. The norm of this vector is unimportant, only its direction matters.

Note: Even in 2D, all the 3 components of this vectors are important (i.e. the polarization can be
orthogonal to the plane of the simulation).

• laser.direction (3 floats in 3D) The coordinates of a vector that points in the propagation direction of
the laser. The norm of this vector is unimportant, only its direction matters.

The plane of the antenna that will emit the laser is orthogonal to this vector.

Warning: When running boosted-frame simulations, laser.direction should be parallel to
warpx.boost_direction, for now.

2.3. Input parameters 11

WarpX Documentation

• laser.e_max (float ; in V/m) Peak amplitude of the laser field.

For a laser with a wavelength 𝜆 = 0.8𝜇𝑚, the peak amplitude is related to 𝑎0 by:

𝐸𝑚𝑎𝑥 = 𝑎0
2𝜋𝑚𝑒𝑐

𝑒𝜆
= 𝑎0 × (4.0 · 1012 𝑉.𝑚−1)

When running a boosted-frame simulation, provide the value of laser.e_max in the laboratory frame,
and use warpx.gamma_boost to automatically perform the conversion to the boosted frame.

• laser.wavelength (float; in meters) The wavelength of the laser in vacuum.

When running a boosted-frame simulation, provide the value of laser.wavelength in the laboratory
frame, and use warpx.gamma_boost to automatically perform the conversion to the boosted frame.

• laser.profile (string) The spatio-temporal shape of the laser. The options that are currently implemented
are:

– "Gaussian": The transverse and longitudinal profiles are Gaussian.

– "Harris": The transverse profile is Gaussian, but the longitudinal profile is given by the Harris
function (see laser.profile_duration for more details)

– "parse_field_function": the laser electric field is given by a function in the input
file. It requires additional argument laser.field_function(X,Y,t), which is a math-
ematical expression , e.g. laser.field_function(X,Y,t) = "a0*X**2 * (X>0) *
cos(omega0*t)" where a0 and omega0 are a user-defined constant, see above. The profile
passed here is the full profile, not only the laser envelope. t is time and X and Y are coordi-
nates orthogonal to laser.direction (not necessarily the x and y coordinates of the simula-
tion). All parameters above are required, but none of the parameters below are used when laser.
parse_field_function=1. Even though laser.wavelength and laser.e_max should
be included in the laser function, they still have to be specified as they are used for numerical purposes.

• laser.profile_t_peak (float; in seconds) The time at which the laser reaches its peak intensity, at the
position given by laser.position (only used for the "gaussian" profile)

When running a boosted-frame simulation, provide the value of laser.profile_t_peak in the
laboratory frame, and use warpx.gamma_boost to automatically perform the conversion to the boosted
frame.

• laser.profile_duration (float ; in seconds)

The duration of the laser, defined as 𝜏 below:

– For the "gaussian" profile:

𝐸(𝑥, 𝑡) ∝ exp

(︂
− (𝑡− 𝑡𝑝𝑒𝑎𝑘)2

𝜏2

)︂
– For the "harris" profile:

𝐸(𝑥, 𝑡) ∝ 1

32

[︂
10 − 15 cos

(︂
2𝜋𝑡

𝜏

)︂
+ 6 cos

(︂
4𝜋𝑡

𝜏

)︂
− cos

(︂
6𝜋𝑡

𝜏

)︂]︂
Θ(𝜏 − 𝑡)

When running a boosted-frame simulation, provide the value of laser.profile_duration
in the laboratory frame, and use warpx.gamma_boost to automatically perform the conversion
to the boosted frame.

• laser.profile_waist (float ; in meters) The waist of the transverse Gaussian laser profile, defined as
𝑤0 :

𝐸(𝑥, 𝑡) ∝ exp

(︂
−𝑥2

⊥
𝑤2

0

)︂

12 Chapter 2. Running WarpX as an executable

WarpX Documentation

• laser.profile_focal_distance (float; in meters) The distance from laser_position to the fo-
cal plane. (where the distance is defined along the direction given by laser.direction.)

Use a negative number for a defocussing laser instead of a focussing laser.

When running a boosted-frame simulation, provide the value of laser.
profile_focal_distance in the laboratory frame, and use warpx.gamma_boost to auto-
matically perform the conversion to the boosted frame.

• laser.stc_direction (3 floats) optional (default 1. 0. 0.)

Direction of laser spatio-temporal couplings. See definition in Akturk et al., Opt Express, vol 12, no 19
(2014).

• laser.zeta (float; in meters.seconds) optional (default 0.) Spatial chirp at focus in direction laser.
stc_direction. See definition in Akturk et al., Opt Express, vol 12, no 19 (2014).

• laser.beta (float; in seconds) optional (default 0.) Angular dispersion (or angular chirp) at focus in direc-
tion laser.stc_direction. See definition in Akturk et al., Opt Express, vol 12, no 19 (2014).

• laser.phi2 (float; in seconds**2) optional (default 0.) Temporal chirp at focus. See definition in Akturk
et al., Opt Express, vol 12, no 19 (2014).

2.3.7 Numerics and algorithms

• warpx.cfl (float) The ratio between the actual timestep that is used in the simulation and the CFL limit. (e.g.
for warpx.cfl=1, the timestep will be exactly equal to the CFL limit.)

• warpx.use_filter (0 or 1) Whether to smooth the charge and currents on the mesh, after depositing them
from the macroparticles. This uses a bilinear filter (see the sub-section Filtering in Theoretical back-
ground).

• algo.current_deposition (integer) The algorithm for current deposition:

– 0: Esirkepov deposition, vectorized

– 1: Esirkepov deposition, non-optimized

– 2: Direct deposition, vectorized

– 3: Direct deposition, non-optimized

Warning: The vectorized Esirkepov deposition (algo.current_deposition=0) is
currently not functional in WarpX. All the other methods (1, 2 and 3) are functional.

• algo.charge_deposition (integer) The algorithm for the charge density deposition:

– 0: Vectorized version

– 1: Non-optimized version

• algo.field_gathering (integer) The algorithm for field gathering:

– 0: Vectorized version

– 1: Non-optimized version

• algo.particle_pusher (integer) The algorithm for the particle pusher:

– 0: Boris pusher

– 1: Vay pusher

2.3. Input parameters 13

WarpX Documentation

• algo.maxwell_fdtd_solver (string) The algorithm for the FDTD Maxwell field solver:

– yee: Yee FDTD solver

– ckc: Cole-Karkkainen solver with Cowan coefficients (see Cowan - PRST-AB 16, 041303 (2013))

• interpolation.nox, interpolation.noy, interpolation.noz (integer) The order of the
shape factors for the macroparticles, for the 3 dimensions of space. Lower-order shape factors result in
faster simulations, but more noisy results,

Note that the implementation in WarpX is more efficient when these 3 numbers are equal, and when they
are between 1 and 3.

• psatd.nox, psatd.noy, pstad.noz (integer) optional (default 16 for all) The order of accuracy of the
spatial derivatives, when using the code compiled with a PSATD solver.

• psatd.ngroups_fft (integer) The number of MPI groups that are created for the FFT, when using the
code compiled with a PSATD solver. The FFTs are global within one MPI group and use guard cell
exchanges in between MPI groups. (If ngroups_fft is larger than the number of MPI ranks used, than
the actual number of MPI ranks is used instead.)

• psatd.fftw_plan_measure (0 or 1) Defines whether the parameters of FFTW plans will be initial-
ized by measuring and optimizing performance (FFTW_MEASURE mode; activated by default here). If
psatd.fftw_plan_measure is set to 0, then the best parameters of FFTW plans will simply be
estimated (FFTW_ESTIMATE mode). See this section of the FFTW documentation for more information.

2.3.8 Diagnostics and output

• amr.plot_int (integer) The number of PIC cycles inbetween two consecutive data dumps. Use a negative
number to disable data dumping.

• warpx.do_boosted_frame_diagnostic (0 or 1) Whether to use the back-transformed diagnostics
(i.e. diagnostics that perform on-the-fly conversion to the laboratory frame, when running boosted-frame
simulations)

• warpx.num_snapshots_lab (integer) Only used when warpx.do_boosted_frame_diagnostic
is 1. The number of lab-frame snapshots that will be written.

• warpx.dt_snapshots_lab (float, in seconds) Only used when warpx.
do_boosted_frame_diagnostic is 1. The time interval inbetween the lab-frame snapshots
(where this time interval is expressed in the laboratory frame).

• warpx.plot_raw_fields (0 or 1) optional (default 0) By default, the fields written in the plot files are
averaged on the nodes. When `warpx.plot_raw_fields is 1, then the raw (i.e. unaveraged) fields
are also saved in the plot files.

• warpx.plot_raw_fields_guards (0 or 1) Only used when warpx.plot_raw_fields is 1.
Whether to include the guard cells in the output of the raw fields.

• warpx.plot_finepatch (0 or 1) Only used when mesh refinement is activated and warpx.
plot_raw_fields is 1. Whether to output the data of the fine patch, in the plot files.

• warpx.plot_crsepatch (0 or 1) Only used when mesh refinement is activated and warpx.
plot_raw_fields is 1. Whether to output the data of the coarse patch, in the plot files.

2.3.9 Checkpoints and restart

WarpX supports checkpoints/restart via AMReX.

14 Chapter 2. Running WarpX as an executable

http://www.fftw.org/fftw3_doc/Planner-Flags.html

WarpX Documentation

• amr.check_int (integer) The number of iterations between two consecutive checkpoints. Use a negative
number to disable checkpoints.

• amr.restart (string) Name of the checkpoint file to restart from. Returns an error if the folder does not
exist or if it is not properly formatted.

2.4 Profiling the code

2.4.1 Profiling with AMREX’s built-in profiling tools

See this page in the AMReX documentation.

2.4.2 Profiling the code with Intel Advisor on NERSC

Follow these steps:

• Instrument the code during compilation

module swap craype-haswell craype-mic-knl
make -j 16 COMP=intel USE_VTUNE=TRUE

(where the first line is only needed for KNL)

• In your SLURM submission script, use the following lines in order to run the executable. (In addition to setting
the usual OMP environment variables.)

module load advisor
export ADVIXE_EXPERIMENTAL=roofline
srun -n <n_mpi> -c <n_logical_cores_per_mpi> --cpu_bind=cores advixe-cl -collect
→˓survey -project-dir advisor -trace-mpi -- <warpx_executable> inputs
srun -n <n_mpi> -c <n_logical_cores_per_mpi> --cpu_bind=cores advixe-cl -collect
→˓tripcounts -flop -project-dir advisor -trace-mpi -- <warpx_executable> inputs

where <n_mpi> and <n_logical_cores_per_mpi> should be replaced by the proper values, and
<warpx_executable> should be replaced by the name of the WarpX executable.

• Launch the Intel Advisor GUI

module load advisor
advixe-gui

(Note: this requires to use ssh -XY when connecting to Cori.)

2.4. Profiling the code 15

https://amrex-codes.github.io/amrex/docs_html/Chapter12.html

WarpX Documentation

16 Chapter 2. Running WarpX as an executable

CHAPTER 3

Running WarpX from Python

3.1 How to run a new simulation

After installing WarpX as a Python package, you can use its functionalities in a Python script to run a simulation.

In order to run a new simulation:

• Create a new directory, where the simulation will be run.

• Add a Python script in the directory.

This file contains the numerical and physical parameters that define the situation to be simulated. Example input files
can be found in the section Example input files.

• Run the script with Python:

mpirun -np <n_ranks> python <python_script>

where <n_ranks> is the number of MPI ranks used, and <python_script> is the name of the script.

3.2 Example input files

This section allows you to download Python scripts that correspond to different physical situations.

3.2.1 Beam-driven acceleration

• Without mesh refinement

• With mesh refinement

17

WarpX Documentation

3.2.2 Laser-driven acceleration

• Without mesh refinement

18 Chapter 3. Running WarpX from Python

CHAPTER 4

Visualizing the simulation results

4.1 Visualization with yt

yt is a Python package that can help in analyzing and visualizing WarpX data (among other data formats). It is
convenient to use yt within a Jupyter notebook.

4.1.1 Installation

From the terminal:

pip install yt jupyter

or with the Anaconda distribution of python (recommended):

conda install -c atmyers yt

4.1.2 Visualizing the data

Once data (“plot files”) has been created by the simulation, open a Jupyter notebook from the terminal:

jupyter notebook

Then use the following commands in the first cell of the notebook to import yt and load the first plot file:

import yt
ds = yt.load('./plt00000/')

Field data

Field data can be visualized using yt.SlicePlot (see the docstring of this function here)

19

http://yt-project.org/
http://jupyter.org/
https://anaconda.org/
http://yt-project.org/doc/reference/api/yt.visualization.plot_window.html#yt.visualization.plot_window.SlicePlot

WarpX Documentation

For instance, in order to plot the field Ex in a slice orthogonal to y (1):

yt.SlicePlot(ds, 1, 'Ex')

Alternatively, the data can be obtained as a numpy array.

For instance, in order to obtain the field jz (on level 0) as a numpy array:

ad0 = ds.covering_grid(level=0, left_edge=ds.domain_left_edge, dims=ds.domain_
→˓dimensions)
jz_array = ad0['jz'].to_ndarray()

Particle data

Particle data can be visualized using yt.ParticlePhasePlot (see the docstring here).

For instance, in order to plot the particles’ x and y positions:

yt.ParticlePhasePlot(ds.all_data(), 'particle_position_x', 'particle_position_y',
→˓'particle_weight')

Alternatively, the data can be obtained as a numpy array.

For instance, in order to obtain the array of position x as a numpy array:

ad = ds.all_data()
x = ad['particle_position_x'].to_ndarray()

4.1.3 Further information

A lot more information can be obtained from the yt documentation, and the corresponding notebook tutorials here.

4.2 Visualization with Visit

WarpX results can also be visualized by VisIt, an open source visualization and analysis software. VisIT can be
downloaded and installed from https://wci.llnl.gov/simulation/computer-codes/visit.

Assuming that you ran a 2D simulation, here are instructions for making a simple plot from a given plotfile:

• Open the header file: Run VisIt, then select “File” -> “Open file . . . ”, then select the Header file associated with
the plotfile of interest (e.g., plt10000/Header).

• View the data: Select “Add” -> “Pseudocolor” -> “Ez” and select “Draw”. You can select other variable to draw,
such as jx, jy, jz, Ex, . . .

• View the grid structure: Select “Subset” -> “levels”. Then double clik the text “Subset-levels”, enable the
“Wireframe” option, select “Apply”, select “Dismiss”, and then select “Draw”.

• Save the image: Select “File” -> “Set save options”, then customize the image format to your liking, then click
“Save”.

Your image should look similar to the one below

In 3D, you must apply the “Operators” -> “Slicing” -> “ThreeSlice”, You can left-click and drag over the image to
rotate the image to generate image you like.

20 Chapter 4. Visualizing the simulation results

http://www.numpy.org/
http://yt-project.org/doc/reference/api/yt.visualization.particle_plots.html?highlight=particlephaseplot#yt.visualization.particle_plots.ParticlePhasePlot
http://www.numpy.org/
http://yt-project.org/doc/
https://wci.llnl.gov/simulation/computer-codes/visit

WarpX Documentation

4.2. Visualization with Visit 21

WarpX Documentation

To make a movie, you must first create a text file named movie.visitwith a list of the Header files for the individual
frames.

The next step is to run VisIt, select “File” -> “Open file . . . ”, then select movie.visit. Create an image to your
liking and press the “play” button on the VCR-like control panel to preview all the frames. To save the movie, choose
“File” -> “Save movie . . . ”, and follow the instructions on the screen.

4.3 PyQt-based visualization GUI: PICViewer

The toolkit provides various easy-to-use functions for data analysis of Warp/WarpX simulations.

4.3.1 Main features

• 2D/3D openPMD or WarpX data visualization,

• Multi-plot panels (up to 6 rows x 5 columns) which can be controlled independently or synchronously

• Interactive mouse functions (panel selection, image zoom-in, local data selection, etc)

• Animation from a single or multiple panel(s)

• Saving your job configuration and loading it later

22 Chapter 4. Visualizing the simulation results

WarpX Documentation

• Interface to use VisIt, yt, or mayavi for 3D volume rendering (currently updating)

4.3.2 Required software

• python 2.7 or higher: http://docs.continuum.io/anaconda/install.

• PyQt5

conda install pyqt

• h5py

• matplotlib

• numpy

• yt

pip install git+https://github.com/yt-project/yt.git --user

• numba

4.3.3 Installation

pip install picviewer

You need to install yt and PySide separately.

You can install from the source for the latest update,

pip install git+https://bitbucket.org/ecp_warpx/picviewer/

4.3.4 To install manually

• Clone this repository

git clone https://bitbucket.org/ecp_warpx/picviewer/

• Switch to the cloned directory with cd picviewer and type python setup.py install

4.3.5 To run

• You can start PICViewer from any directory. Type picviewer in the command line. Select a folder where your
data files are located.

• You can directly open your data. Move on to a folder where your data files ae located (cd [your data folder])
and type picviewer in the command line.

4.3. PyQt-based visualization GUI: PICViewer 23

http://docs.continuum.io/anaconda/install

WarpX Documentation

4.4 In situ Visualization with SENSEI

SENSEI is a light weight framework for in situ data analysis. SENSEI’s data model and API provide uniform access
to and run time selection of a diverse set of visualization and analysis back ends including VisIt Libsim, ParaView
Catalyst, VTK-m, Ascent, ADIOS, Yt, and Python.

SENSEI uses an XML file to select and configure one or more back ends at run time. Run time selection of the back
end via XML means one user can access Catalyst, another Libsim, yet another Python with no changes to the code.

4.4.1 Compiling with GNU Make

For codes making use of AMReX’s build system add the following variable to the code’s main GNUmakefile.

USE_SENSEI_INSITU = TRUE

When set, AMReX’s make files will query environment variables for the lists of compiler and linker flags, include
directories, and link libraries. These lists can be quite elaborate when using more sophisticated back ends, and are
best set automatically using the sensei_config command line tool that should be installed with SENSEI. Prior to
invoking make use the following command to set these variables:

source sensei_config

Typically, the sensei_config tool is in the users PATH after loading the desired SENSEI module. After configur-
ing the build environment with sensei_config, proceed as usual.

make -j4 -f GNUmakefile

4.4.2 ParmParse Configuration

Once an AMReX code has been compiled with SENSEI features enabled, it will need to be enabled and configured at
runtime. This is done using ParmParse input file. The following 3 ParmParse parameters are used:

insitu.int = 2
insitu.start = 0
insitu.config = render_iso_catalyst_2d.xml

insitu.int turns in situ processing on or off and controls how often data is processed. insitu.start controls
when in situ processing starts. insitu.config points to the SENSEI XML file which selects and configures the
desired back end.

4.4.3 Obtaining SENSEI

SENSEI is hosted on Kitware’s Gitlab site at https://gitlab.kitware.com/sensei/sensei It’s best to checkout the latest
release rather than working on the master branch.

To ease the burden of wrangling back end installs SENSEI provides two platforms with all dependencies pre-installed,
a VirtualBox VM, and a NERSC Cori deployment. New users are encouraged to experiment with one of these.

24 Chapter 4. Visualizing the simulation results

https://gitlab.kitware.com/sensei/sensei

WarpX Documentation

SENSEI VM

The SENSEI VM comes with all of SENSEI’s dependencies and the major back ends such as VisIt and ParaView
installed. The VM is the easiest way to test things out. It also can be used to see how installs were done and the
environment configured.

NERSC Cori

SENSEI is deployed at NERSC on Cori. The NERSC deployment includes the major back ends such as ParaView
Catalyst, VisIt Libsim, and Python.

4.4. In situ Visualization with SENSEI 25

WarpX Documentation

26 Chapter 4. Visualizing the simulation results

CHAPTER 5

Theoretical background

This page contains information on the algorithms that are used in WarpX.

Topics:

27

	Building/installing WarpX
	Running WarpX as an executable
	Running WarpX from Python
	Visualizing the simulation results
	Theoretical background

