

WarpX documentation

Warning

This is an alpha release of WarpX.
The code is still in active development.
Robustness and performance may fluctuate at this stage.
The input and output formats may evolve.

WarpX is an advanced electromagnetic Particle-In-Cell code.

It supports many features including:

	Perfectly-Matched Layers (PML)

	Boosted-frame simulations

	Mesh refinement

For details on the algorithms that WarpX implements, see the section Theoretical background.

In addition, WarpX is a highly-parallel and highly-optimized code
and features hybrid OpenMP/MPI parallelization, advanced vectorization
techniques and load balancing capabilities.

In order to learn to use the code, please see the sections below:

	Building/installing WarpX

	Running WarpX as an executable

	Running WarpX from Python

	Visualizing the simulation results

	Theoretical background

Building/installing WarpX

	WarpX can currently be built (and run) in two variants:

	
	as a compiled executable (run with the command line)

	as a Python package (run through a Python script)

Currently, for both of these options, the user needs to build the code from source.

Downloading the source code

Clone the source codes of WarpX, and its dependencies AMReX and PICSAR into one
single directory (e.g. warpx_directory):

mkdir warpx_directory
cd warpx_directory
git clone https://github.com/ECP-WarpX/WarpX.git
git clone https://bitbucket.org/berkeleylab/picsar.git
git clone https://github.com/AMReX-Codes/amrex.git

Then switch to the branch development of AMReX

cd amrex/
git checkout development
cd ..

Compiling WarpX as an executable

cd into the directory WarpX and type

make -j 4

This will generate an executable file in the Bin directory.

Note

The compilation options are set in the file GNUmakefile. The default
options correspond to an optimized code for 3D geometry. You can modify the
options in this file in order to (for instance):

	Use 2D geometry

	Disable OpenMP

	Profile or debug the code

	Choose a given compiler

For a description of these different options, see the corresponding page [https://amrex-codes.github.io/amrex/BuildingAMReX.html#building-with-gnu-make] in
the AMReX documentation.

Alternatively, instead of modifying the file GNUmakefile, you can
directly pass the options in command line ; for instance:

make -j 4 USE_OMP=FALSE

In order to clean a previously compiled version:

make realclean

Installing WarpX as a Python package

Type

make -j 4 USE_PYTHON_MAIN=TRUE

or edit the GNUmakefile and set USE_PYTHON_MAIN=TRUE, and type

make -j 4

This will compile the code, and install the Python bindings as a package (named
pywarpx) in your standard Python installation (i.e. in your
site-packages directory). The note on compiler options from the previous
section also holds when compiling the Python package.

In case you do not have write permissions to the default Python installation (e.g. typical on computer clusters), use the following command instead:

make -j 4 PYINSTALLOPTIONS=--user

In this case, you can also set the variable PYTHONUSERBASE to set the folder where pywarpx will be installed.

Advanced building instructions

	Building the spectral solver

	Building WarpX for Cori (NERSC)

	Building WarpX for Summit-dev (OLCF)

Building the spectral solver

By default, the code is compiled with a finite-difference (FDTD) Maxwell solver.
In order to run the code with a spectral solver, you need to:

	Install (or load) an MPI-enabled version of FFTW.
For instance, for Debian, this can be done with

apt-get install libfftw3-dev libfftw3-mpi-dev

	Set the environment variable FFTW_HOME to the path for FFTW.
For instance, for Debian, this is done with

export FFTW_HOME=/usr/

	Set USE_PSATD=TRUE when compiling:

make -j 4 USE_PSATD=TRUE

Building WarpX for Cori (NERSC)

For the Cori cluster [http://www.nersc.gov/users/computational-systems/cori/] at NERSC,
you need to type the following command when compiling:

Note

In order to compile the code with a spectral solver, type

module load cray-fftw

before typing any of the commands below, and add USE_PSATD=TRUE
at the end of the command containing make.

In order to compile for the Haswell architecture:

	with the Intel compiler

make -j 16 COMP=intel

	with the GNU compiler

module swap PrgEnv-intel PrgEnv-gnu
make -j 16 COMP=gnu

In order to compile for the Knight’s Landing (KNL) architecture:

	with the Intel compiler

module swap craype-haswell craype-mic-knl
make -j 16 COMP=intel

	with the GNU compiler

module swap craype-haswell craype-mic-knl
module swap PrgEnv-intel PrgEnv-gnu
make -j 16 COMP=gnu

Building WarpX for Summit-dev (OLCF)

For the Summit-dev cluster [https://www.olcf.ornl.gov/tag/summitdev/] at OLCF,
use the following commands to download the source code, and switch to the
correct branch:

mkdir warpx_directory
cd warpx_directory

git clone https://github.com/ECP-WarpX/WarpX.git
cd WarpX
git checkout gpu
cd ..

git clone https://bitbucket.org/berkeleylab/picsar.git
cd picsar
git checkout gpu
cd ..

git clone https://github.com/AMReX-Codes/amrex.git
cd amrex
git checkout development
cd ..

Then, use the following set of commands to compile:

module load pgi
module load cuda
make

Running WarpX as an executable

	How to run a new simulation

	Example input files

	Input parameters

	Profiling the code

How to run a new simulation

After compiling the code, the
WarpX executable is stored in the folder warpx/Bin. (Its name starts
with main but depends on the compiler options.)

In order to run a new simulation:

	Create a new directory, where the simulation will be run.

	Copy the executable to this directory:

cp warpx/Bin/<warpx_executable> <run_directory>/warpx.exe

where <warpx_executable> should be replaced by the actual name
of the executable (see above) and <run_directory> by the actual
path to the run directory.

	Add an input file in the directory.

This file contains the numerical and physical parameters that define
the situation to be simulated.
Example input files can be found in the section Example input files.
The different parameters in these files are explained in the section
Input parameters.

	Run the executable:

mpirun -np <n_ranks> ./warpx.exe <input_file>

where <n_ranks> is the number of MPI ranks used, and <input_file>
is the name of the input file.

Example input files

This section allows you to download input files that correspond to different
physical situations. For a definition of the different parameters
that are set in these files, see the section Input parameters.

Beam-driven acceleration

	2D case

	2D case in boosted frame

	3D case in boosted frame

Laser-driven acceleration

	2D case

	2D case in boosted frame

	3D case

Plasma mirror

2D case

Uniform plasma

2D case
3D case

Input parameters

Warning

This section is currently in development.

Overall simulation parameters

	
	max_step (integer)

	The number of PIC cycles to perform.

	
	warpx.gamma_boost (float)

	The Lorentz factor of the boosted frame in which the simulation is run.
(The corresponding Lorentz transformation is assumed to be along warpx.boost_direction.)

When using this parameter, some of the input parameters are automatically
converted to the boosted frame. (See the corresponding documentation of each
input parameters.)

Note

For now, only the laser parameters will be converted.

	
	warpx.boost_direction (string: x, y or z)

	The direction of the Lorentz-transform for boosted-frame simulations
(The direction y cannot be used in 2D simulations.)

Setting up the field mesh

	
	amr.n_cell (2 integers in 2D, 3 integers in 3D)

	The number of grid points along each direction (on the coarsest level)

	
	amr.max_level (integer)

	When using mesh refinement, the number of refinement levels that will be used.

Use 0 in order to disable mesh refinement.

	
	geometry.is_periodic (2 integers in 2D, 3 integers in 3D)

	Whether the boundary conditions are periodic, in each direction.

For each direction, use 1 for periodic conditions, 0 otherwise.

	
	geometry.prob_lo and geometry.prob_hi (2 floats in 2D, 3 integers in 3D; in meters)

	The extent of the full simulation box. This box is rectangular, and thus its
extent is given here by the coordinates of the lower corner (geometry.prob_lo) and
upper corner (geometry.prob_hi).

	
	warpx.fine_tag_lo and warpx.fine_tag_hi (2 floats in 2D, 3 integers in 3D; in meters)

	When using static mesh refinement with 1 level, the extent of the refined patch.
This patch is rectangular, and thus its extent is given here by the coordinates
of the lower corner (warpx.fine_tag_lo) and upper corner (warpx.fine_tag_hi).

Distribution across MPI ranks and parallelization

	
	amr.max_grid_size (integer)

	Maximum allowable size of each subdomain
(expressed in number of grid points, in each direction).
Each subdomain has its own ghost cells, and can be handled by a
different MPI rank ; several OpenMP threads can work simultaneously on the
same subdomain.

If max_grid_size is such that the total number of subdomains is
larger that the number of MPI ranks used, than some MPI ranks
will handle several subdomains, thereby providing additional flexibility
for load balancing.

When using mesh refinement, this number applies to the subdomains
of the coarsest level, but also to any of the finer level.

	
	warpx.load_balance_int (integer)

	How often WarpX should try to redistribute the work across MPI ranks,
in order to have better load balancing (expressed in number of PIC cycles
inbetween two consecutive attempts at redistributing the work).
Use 0 to disable load_balancing.

When performing load balancing, WarpX measures the wall time for
computational parts of the PIC cycle. It then uses this data to decide
how to redistribute the subdomains across MPI ranks. (Each subdomain
is unchanged, but its owner is changed in order to have better performance.)
This relies on each MPI rank handling several (in fact many) subdomains
(see max_grid_size).

	
	warpx.load_balance_with_sfc (0 or 1) optional (default 0)

	If this is 1: use a Space-Filling Curve (SFC) algorithm in order to perform load-balancing of the simulation.
If this is 0: the Knapsack algorithm is used instead.

	
	warpx.do_dynamic_scheduling (0 or 1) optional (default 1)

	Whether to activate OpenMP dynamic scheduling.

Math parser and user-defined constants

WarpX provides a math parser that reads expressions in the input file.
It can be used to define the plasma density profile, the plasma momentum
distribution or the laser field (see below Particle initialization and
Laser initialization).

The parser reads python-style expressions between double quotes, for instance
"a0*x**2 * (1-y*1.e2) * (x>0)" is a valid expression where a0 is a
user-defined constant and x and y are variables. The factor
(x>0) is 1 where x>0 and 0 where x<=0. It allows the user to
define functions by intervals. User-defined constants can be used in parsed
functions only (i.e., density_function(x,y,z) and field_function(x,y,t),
see below). They are specified with:

	
	constants.use_my_constants (bool)

	Whether to use user-defined constants.

	
	constants.constant_names (strings, separated by spaces)

	A list of variables the user wants to define, e.g., constants.constant_names = a0 n0.

	
	constants.constant_values (floats, sepatated by spaces)

	Values for the user-defined constants., e.g., constants.constant_values = 3. 1.e24.

Particle initialization

	
	particles.nspecies (int)

	The number of species that will be used in the simulation.

	
	particles.species_names (strings, separated by spaces)

	The name of each species. This is then used in the rest of the input deck ;
in this documentation we use <species_name> as a placeholder.

	
	particles.use_fdtd_nci_corr (0 or 1)

	Whether to activate the FDTD Numerical Cherenkov Instability corrector.

	
	particles.rigid_injected_species (strings, separated by spaces)

	List of species injected using the rigid injection method. For species injected
using this method, particles are translated along the +z axis with constant velocity
as long as their z coordinate verifies z<zinject_plane. When z>zinject_plane,
particles are pushed in a standard way, using the specified pusher.

	
	<species_name>.charge (float)

	The charge of one physical particle of this species.

	
	<species_name>.mass (float)

	The mass of one physical particle of this species.

	
	<species_name>.injection_style (string)

	Determines how the particles will be injected in the simulation.
The options are:

	NUniformPerCell: injection with a fixed number of evenly-spaced particles per cell.
This requires the additional parameter <species_name>.num_particles_per_cell_each_dim.

	NRandomPerCell: injection with a fixed number of randomly-distributed particles per cell.
This requires the additional parameter <species_name>.num_particles_per_cell.

	
	<species_name>.profile (string)

	Density profile for this species. The options are:

	constant: Constant density profile within the box, or between <species_name>.xmin
and <species_name>.xmax (and same in all directions). This requires additional
parameter <species_name>.density. i.e., the plasma density in \(m^{-3}\).

	parse_density_function: the density is given by a function in the input file.
It requires additional argument <species_name>.density_function(x,y,z), which is a
mathematical expression for the density of the species, e.g.
electrons.density_function(x,y,z) = "n0+n0*x**2*1.e12" where n0 is a
user-defined constant, see above. Note that using this density profile will turn
warpx.serialize_ics to 1, which may slow down the simulation.

	
	<species_name>.momentum_distribution_type (string)

	Distribution of the normalized momentum (u=p/mc) for this species. The options are:

	constant: constant momentum profile. This requires additional parameters
<species_name>.ux, <species_name>.uy and <species_name>.uz, the normalized
momenta in the x, y and z direction respectively.

	gaussian: gaussian momentum distribution in all 3 directions. This requires
additional arguments for the average momenta along each direction
<species_name>.ux_m, <species_name>.uy_m and <species_name>.uz_m as
well as standard deviations along each direction <species_name>.ux_th,
<species_name>.uy_th and <species_name>.uz_th.

	radial_expansion: momentum depends on the radial coordinate linearly. This
requires additional parameter u_over_r which is the slope.

	parse_momentum_function: the momentum is given by a function in the input
file. It requires additional arguments <species_name>.momentum_function_ux(x,y,z),
<species_name>.momentum_function_uy(x,y,z) and <species_name>.momentum_function_uz(x,y,z),
which gives the distribution of each component of the momentum as a function of space.
Note that using this momentum distribution type will turn
warpx.serialize_ics to 1, which may slow down the simulation.

	
	<species_name>.zinject_plane (float)

	Only read if <species_name> is in particles.rigid_injected_species.
Injection plane when using the rigid injection method.
See particles.rigid_injected_species above.

	
	<species_name>.rigid_avance (bool)

	Only read if <species_name> is in particles.rigid_injected_species.

	If false, each particle is advanced with its
own velocity vz until it reaches zinject_plane.

	If true, each particle is advanced with the average speed of the species
vzbar until it reaches zinject_plane.

	
	<species_name>.do_backward_injection (bool)

	Inject a backward-propagating beam to reduce the effect of charge-separation
fields when running in the boosted frame. See examples.

	
	warpx.serialize_ics (0 or 1)

	Whether or not to use OpenMP threading for particle initialization.

Laser initialization

	
	warpx.use_laser (0 or 1)

	Whether to activate the injection of a laser pulse in the simulation

	
	laser.position (3 floats in 3D and 2D ; in meters)

	The coordinates of one of the point of the antenna that will emit the laser.
The plane of the antenna is entirely defined by laser.position and laser.direction.

laser.position also corresponds to the origin of the coordinates system
for the laser tranverse profile. For instance, for a Gaussian laser profile,
the peak of intensity will be at the position given by laser.position.
This variable can thus be used to shift the position of the laser pulse
transversally.

Note

In 2D, laser.position is still given by 3 numbers, but the second number is ignored.

When running a boosted-frame simulation, provide the value of
laser.position in the laboratory frame, and use warpx.gamma_boost
to automatically perform the conversion to the boosted frame. Note that,
in this case, the laser antenna will be moving, in the boosted frame.

	
	laser.polarization (3 floats in 3D and 2D)

	The coordinates of a vector that points in the direction of polarization of
the laser. The norm of this vector is unimportant, only its direction matters.

Note

Even in 2D, all the 3 components of this vectors are important (i.e.
the polarization can be orthogonal to the plane of the simulation).

	
	laser.direction (3 floats in 3D)

	The coordinates of a vector that points in the propagation direction of
the laser. The norm of this vector is unimportant, only its direction matters.

The plane of the antenna that will emit the laser is orthogonal to this vector.

Warning

When running boosted-frame simulations, laser.direction should
be parallel to warpx.boost_direction, for now.

	
	laser.e_max (float ; in V/m)

	Peak amplitude of the laser field.

For a laser with a wavelength \(\lambda = 0.8\,\mu m\), the peak amplitude
is related to \(a_0\) by:

\[E_{max} = a_0 \frac{2 \pi m_e c}{e\lambda} = a_0 \times (4.0 \cdot 10^{12} \;V.m^{-1})\]

When running a boosted-frame simulation, provide the value of laser.e_max
in the laboratory frame, and use warpx.gamma_boost to automatically
perform the conversion to the boosted frame.

	
	laser.wavelength (float; in meters)

	The wavelength of the laser in vacuum.

When running a boosted-frame simulation, provide the value of
laser.wavelength in the laboratory frame, and use warpx.gamma_boost
to automatically perform the conversion to the boosted frame.

	
	laser.profile (string)

	The spatio-temporal shape of the laser. The options that are currently
implemented are:

	"Gaussian": The transverse and longitudinal profiles are Gaussian.

	"Harris": The transverse profile is Gaussian, but the longitudinal profile
is given by the Harris function (see laser.profile_duration for more details)

	"parse_field_function": the laser electric field is given by a function in the
input file. It requires additional argument laser.field_function(X,Y,t), which
is a mathematical expression , e.g.
laser.field_function(X,Y,t) = "a0*X**2 * (X>0) * cos(omega0*t)" where
a0 and omega0 are a user-defined constant, see above. The profile passed
here is the full profile, not only the laser envelope. t is time and X
and Y are coordinates orthogonal to laser.direction (not necessarily the
x and y coordinates of the simulation). All parameters above are required, but
none of the parameters below are used when laser.parse_field_function=1. Even
though laser.wavelength and laser.e_max should be included in the laser
function, they still have to be specified as they are used for numerical purposes.

	
	laser.profile_t_peak (float; in seconds)

	The time at which the laser reaches its peak intensity, at the position
given by laser.position (only used for the "gaussian" profile)

When running a boosted-frame simulation, provide the value of
laser.profile_t_peak in the laboratory frame, and use warpx.gamma_boost
to automatically perform the conversion to the boosted frame.

	laser.profile_duration (float ; in seconds)

The duration of the laser, defined as \(\tau\) below:

	For the "gaussian" profile:

\[E(\boldsymbol{x},t) \propto \exp\left(-\frac{(t-t_{peak})^2}{\tau^2} \right)\]

	For the "harris" profile:

\[E(\boldsymbol{x},t) \propto \frac{1}{32}\left[10 - 15 \cos\left(\frac{2\pi t}{\tau}\right) + 6 \cos\left(\frac{4\pi t}{\tau}\right) - \cos\left(\frac{6\pi t}{\tau}\right) \right]\Theta(\tau - t)\]

When running a boosted-frame simulation, provide the value of
laser.profile_duration in the laboratory frame, and use warpx.gamma_boost
to automatically perform the conversion to the boosted frame.

	
	laser.profile_waist (float ; in meters)

	The waist of the transverse Gaussian laser profile, defined as \(w_0\) :

\[E(\boldsymbol{x},t) \propto \exp\left(-\frac{\boldsymbol{x}_\perp^2}{w_0^2} \right)\]

	
	laser.profile_focal_distance (float; in meters)

	The distance from laser_position to the focal plane.
(where the distance is defined along the direction given by laser.direction.)

Use a negative number for a defocussing laser instead of a focussing laser.

When running a boosted-frame simulation, provide the value of
laser.profile_focal_distance in the laboratory frame, and use warpx.gamma_boost
to automatically perform the conversion to the boosted frame.

	
	laser.stc_direction (3 floats) optional (default 1. 0. 0.)

	
	Direction of laser spatio-temporal couplings.

	See definition in Akturk et al., Opt Express, vol 12, no 19 (2014).

	
	laser.zeta (float; in meters.seconds) optional (default 0.)

	Spatial chirp at focus in direction laser.stc_direction. See definition in
Akturk et al., Opt Express, vol 12, no 19 (2014).

	
	laser.beta (float; in seconds) optional (default 0.)

	Angular dispersion (or angular chirp) at focus in direction laser.stc_direction.
See definition in Akturk et al., Opt Express, vol 12, no 19 (2014).

	
	laser.phi2 (float; in seconds**2) optional (default 0.)

	Temporal chirp at focus.
See definition in Akturk et al., Opt Express, vol 12, no 19 (2014).

Numerics and algorithms

	
	warpx.cfl (float)

	The ratio between the actual timestep that is used in the simulation
and the CFL limit. (e.g. for warpx.cfl=1, the timestep will be
exactly equal to the CFL limit.)

	
	warpx.use_filter (0 or 1)

	Whether to smooth the charge and currents on the mesh, after depositing
them from the macroparticles. This uses a bilinear filter
(see the sub-section Filtering in Theoretical background).

	
	algo.current_deposition (integer)

	The algorithm for current deposition:

	0: Esirkepov deposition, vectorized

	1: Esirkepov deposition, non-optimized

	2: Direct deposition, vectorized

	3: Direct deposition, non-optimized

Warning

The vectorized Esirkepov deposition
(algo.current_deposition=0) is currently not functional in WarpX.
All the other methods (1, 2 and 3) are functional.

	
	algo.charge_deposition (integer)

	The algorithm for the charge density deposition:

	0: Vectorized version

	1: Non-optimized version

	
	algo.field_gathering (integer)

	The algorithm for field gathering:

	0: Vectorized version

	1: Non-optimized version

	
	algo.particle_pusher (integer)

	The algorithm for the particle pusher:

	0: Boris pusher

	1: Vay pusher

	
	algo.maxwell_fdtd_solver (string)

	The algorithm for the FDTD Maxwell field solver:

	yee: Yee FDTD solver

	ckc: Cole-Karkkainen solver with Cowan
coefficients (see Cowan - PRST-AB 16, 041303 (2013))

	
	interpolation.nox, interpolation.noy, interpolation.noz (integer)

	The order of the shape factors for the macroparticles, for the 3 dimensions of space.
Lower-order shape factors result in faster simulations, but more noisy results,

Note that the implementation in WarpX is more efficient when these 3 numbers are equal,
and when they are between 1 and 3.

	
	psatd.nox, psatd.noy, pstad.noz (integer) optional (default 16 for all)

	The order of accuracy of the spatial derivatives, when using the code compiled with a PSATD solver.

	
	psatd.ngroups_fft (integer)

	The number of MPI groups that are created for the FFT, when using the code compiled with a PSATD solver.
The FFTs are global within one MPI group and use guard cell exchanges in between MPI groups.
(If ngroups_fft is larger than the number of MPI ranks used,
than the actual number of MPI ranks is used instead.)

	
	psatd.fftw_plan_measure (0 or 1)

	Defines whether the parameters of FFTW plans will be initialized by
measuring and optimizing performance (FFTW_MEASURE mode; activated by default here).
If psatd.fftw_plan_measure is set to 0, then the best parameters of FFTW
plans will simply be estimated (FFTW_ESTIMATE mode).
See this section of the FFTW documentation [http://www.fftw.org/fftw3_doc/Planner-Flags.html]
for more information.

Diagnostics and output

	
	amr.plot_int (integer)

	The number of PIC cycles inbetween two consecutive data dumps. Use a
negative number to disable data dumping.

	
	warpx.do_boosted_frame_diagnostic (0 or 1)

	Whether to use the back-transformed diagnostics (i.e. diagnostics that
perform on-the-fly conversion to the laboratory frame, when running
boosted-frame simulations)

	
	warpx.num_snapshots_lab (integer)

	Only used when warpx.do_boosted_frame_diagnostic is 1.
The number of lab-frame snapshots that will be written.

	
	warpx.dt_snapshots_lab (float, in seconds)

	Only used when warpx.do_boosted_frame_diagnostic is 1.
The time interval inbetween the lab-frame snapshots (where this
time interval is expressed in the laboratory frame).

	
	warpx.plot_raw_fields (0 or 1) optional (default 0)

	By default, the fields written in the plot files are averaged on the nodes.
When `warpx.plot_raw_fields is 1, then the raw (i.e. unaveraged)
fields are also saved in the plot files.

	
	warpx.plot_raw_fields_guards (0 or 1)

	Only used when warpx.plot_raw_fields is 1.
Whether to include the guard cells in the output of the raw fields.

	
	warpx.plot_finepatch (0 or 1)

	Only used when mesh refinement is activated and warpx.plot_raw_fields is 1.
Whether to output the data of the fine patch, in the plot files.

	
	warpx.plot_crsepatch (0 or 1)

	Only used when mesh refinement is activated and warpx.plot_raw_fields is 1.
Whether to output the data of the coarse patch, in the plot files.

Checkpoints and restart

WarpX supports checkpoints/restart via AMReX.

	
	amr.check_int (integer)

	The number of iterations between two consecutive checkpoints. Use a
negative number to disable checkpoints.

	
	amr.restart (string)

	Name of the checkpoint file to restart from. Returns an error if the folder does not exist
or if it is not properly formatted.

Profiling the code

Profiling with AMREX’s built-in profiling tools

See this page [https://amrex-codes.github.io/amrex/docs_html/Chapter12.html] in the AMReX documentation.

Profiling the code with Intel Advisor on NERSC

Follow these steps:

	Instrument the code during compilation

module swap craype-haswell craype-mic-knl
make -j 16 COMP=intel USE_VTUNE=TRUE

(where the first line is only needed for KNL)

	In your SLURM submission script, use the following
lines in order to run the executable. (In addition
to setting the usual OMP environment variables.)

module load advisor
export ADVIXE_EXPERIMENTAL=roofline
srun -n <n_mpi> -c <n_logical_cores_per_mpi> --cpu_bind=cores advixe-cl -collect survey -project-dir advisor -trace-mpi -- <warpx_executable> inputs
srun -n <n_mpi> -c <n_logical_cores_per_mpi> --cpu_bind=cores advixe-cl -collect tripcounts -flop -project-dir advisor -trace-mpi -- <warpx_executable> inputs

where <n_mpi> and <n_logical_cores_per_mpi> should be replaced by
the proper values, and <warpx_executable> should be replaced by the
name of the WarpX executable.

	Launch the Intel Advisor GUI

module load advisor
advixe-gui

(Note: this requires to use ssh -XY when connecting to Cori.)

Running WarpX from Python

	How to run a new simulation

	Example input files

How to run a new simulation

After installing WarpX as a Python package, you can use its functionalities in a Python script
to run a simulation.

In order to run a new simulation:

	Create a new directory, where the simulation will be run.

	Add a Python script in the directory.

This file contains the numerical and physical parameters that define
the situation to be simulated.
Example input files can be found in the section Example input files.

	Run the script with Python:

mpirun -np <n_ranks> python <python_script>

where <n_ranks> is the number of MPI ranks used, and <python_script>
is the name of the script.

Example input files

This section allows you to download Python scripts that correspond to different
physical situations.

Beam-driven acceleration

	Without mesh refinement

	With mesh refinement

Laser-driven acceleration

	Without mesh refinement

Visualizing the simulation results

	Visualization with yt

	Visualization with Visit

	PyQt-based visualization GUI: PICViewer

	In situ Visualization with SENSEI

Visualization with yt

yt [http://yt-project.org/] is a Python package that can help in analyzing
and visualizing WarpX data (among other data formats). It is convenient
to use yt within a Jupyter notebook [http://jupyter.org/].

Installation

From the terminal:

pip install yt jupyter

or with the Anaconda distribution [https://anaconda.org/] of python (recommended):

conda install -c atmyers yt

Visualizing the data

Once data (“plot files”) has been created by the simulation, open a Jupyter notebook from
the terminal:

jupyter notebook

Then use the following commands in the first cell of the notebook to import yt
and load the first plot file:

import yt
ds = yt.load('./plt00000/')

Field data

Field data can be visualized using yt.SlicePlot (see the docstring of
this function here [http://yt-project.org/doc/reference/api/yt.visualization.plot_window.html#yt.visualization.plot_window.SlicePlot])

For instance, in order to plot the field Ex in a slice orthogonal to y (1):

yt.SlicePlot(ds, 1, 'Ex')

Alternatively, the data can be obtained as a numpy [http://www.numpy.org/] array.

For instance, in order to obtain the field jz (on level 0) as a numpy array:

ad0 = ds.covering_grid(level=0, left_edge=ds.domain_left_edge, dims=ds.domain_dimensions)
jz_array = ad0['jz'].to_ndarray()

Particle data

Particle data can be visualized using yt.ParticlePhasePlot (see the docstring
here [http://yt-project.org/doc/reference/api/yt.visualization.particle_plots.html?highlight=particlephaseplot#yt.visualization.particle_plots.ParticlePhasePlot]).

For instance, in order to plot the particles’ x and y positions:

yt.ParticlePhasePlot(ds.all_data(), 'particle_position_x', 'particle_position_y', 'particle_weight')

Alternatively, the data can be obtained as a numpy [http://www.numpy.org/] array.

For instance, in order to obtain the array of position x as a numpy array:

ad = ds.all_data()
x = ad['particle_position_x'].to_ndarray()

Further information

A lot more information can be obtained from the yt documentation, and the
corresponding notebook tutorials here [http://yt-project.org/doc/].

Visualization with Visit

WarpX results can also be visualized by VisIt, an open source visualization and analysis software. VisIT can be downloaded and installed from https://wci.llnl.gov/simulation/computer-codes/visit.

Assuming that you ran a 2D simulation, here are instructions for making a simple plot from a given plotfile:

	Open the header file: Run VisIt, then select “File” -> “Open file …”, then select the Header file associated with the plotfile of interest (e.g., plt10000/Header).

	View the data: Select “Add” -> “Pseudocolor” -> “Ez” and select “Draw”. You can select other variable to draw, such as jx, jy, jz, Ex, …

	View the grid structure: Select “Subset” -> “levels”. Then double clik the text “Subset-levels”, enable the “Wireframe” option, select “Apply”, select “Dismiss”, and then select “Draw”.

	Save the image: Select “File” -> “Set save options”, then customize the image format to your liking, then click “Save”.

Your image should look similar to the one below

[image: picture]

In 3D, you must apply the “Operators” -> “Slicing”
-> “ThreeSlice”, You can left-click and drag over the
image to rotate the image to generate image you like.

To make a movie, you must first create a text file named movie.visit with a
list of the Header files for the individual frames.

The next step is to run VisIt, select “File” -> “Open file
…”, then select movie.visit. Create an image to your liking and press the
“play” button on the VCR-like control panel to preview all the frames. To save
the movie, choose “File” -> “Save movie …”, and follow the instructions on the screen.

PyQt-based visualization GUI: PICViewer

[image: picture]

The toolkit provides various easy-to-use functions for data analysis of
Warp/WarpX simulations.

Main features

	2D/3D openPMD or WarpX data visualization,

	Multi-plot panels (up to 6 rows x 5 columns) which can be controlled independently or synchronously

	Interactive mouse functions (panel selection, image zoom-in, local data selection, etc)

	Animation from a single or multiple panel(s)

	Saving your job configuration and loading it later

	Interface to use VisIt, yt, or mayavi for 3D volume rendering (currently updating)

Required software

	python 2.7 or higher: http://docs.continuum.io/anaconda/install.

	PyQt5

conda install pyqt

	h5py

	matplotlib

	numpy

	yt

pip install git+https://github.com/yt-project/yt.git --user

	numba

Installation

pip install picviewer

You need to install yt and PySide separately.

You can install from the source for the latest update,

pip install git+https://bitbucket.org/ecp_warpx/picviewer/

To install manually

	Clone this repository

git clone https://bitbucket.org/ecp_warpx/picviewer/

	Switch to the cloned directory with cd picviewer and type python setup.py install

To run

	You can start PICViewer from any directory. Type picviewer in the command line. Select a folder where your data files are located.

	You can directly open your data. Move on to a folder where your data files ae located (cd [your data folder]) and type picviewer in the command line.

In situ Visualization with SENSEI

SENSEI is a light weight framework for in situ data analysis. SENSEI’s data
model and API provide uniform access to and run time selection of a diverse set
of visualization and analysis back ends including VisIt Libsim, ParaView
Catalyst, VTK-m, Ascent, ADIOS, Yt, and Python.

SENSEI uses an XML file to select and configure one or more back ends at run
time. Run time selection of the back end via XML means one user can access
Catalyst, another Libsim, yet another Python with no changes to the code.

Compiling with GNU Make

For codes making use of AMReX’s build system add the following variable to the
code’s main GNUmakefile.

USE_SENSEI_INSITU = TRUE

When set, AMReX’s make files will query environment variables for the lists of
compiler and linker flags, include directories, and link libraries. These lists
can be quite elaborate when using more sophisticated back ends, and are best
set automatically using the sensei_config command line tool that should
be installed with SENSEI. Prior to invoking make use the following command to
set these variables:

source sensei_config

Typically, the sensei_config tool is in the users PATH after loading
the desired SENSEI module. After configuring the build environment with
sensei_config, proceed as usual.

make -j4 -f GNUmakefile

ParmParse Configuration

Once an AMReX code has been compiled with SENSEI features enabled, it will need
to be enabled and configured at runtime. This is done using ParmParse input file.
The following 3 ParmParse parameters are used:

insitu.int = 2
insitu.start = 0
insitu.config = render_iso_catalyst_2d.xml

insitu.int turns in situ processing on or off and controls how often
data is processed. insitu.start controls when in situ processing
starts. insitu.config points to the SENSEI XML file which selects and
configures the desired back end.

Obtaining SENSEI

SENSEI is hosted on Kitware’s Gitlab site at https://gitlab.kitware.com/sensei/sensei
It’s best to checkout the latest release rather than working on the master branch.

To ease the burden of wrangling back end installs SENSEI provides two platforms
with all dependencies pre-installed, a VirtualBox VM, and a NERSC Cori
deployment. New users are encouraged to experiment with one of these.

SENSEI VM

The SENSEI VM comes with all of SENSEI’s dependencies and the major back ends
such as VisIt and ParaView installed. The VM is the easiest way to test things
out. It also can be used to see how installs were done and the environment
configured.

NERSC Cori

SENSEI is deployed at NERSC on Cori. The NERSC deployment includes the major
back ends such as ParaView Catalyst, VisIt Libsim, and Python.

Theoretical background

This page contains information on the algorithms that are used in WarpX.

Topics:

Index

In-depth explanation of a PWFA example

This example illustrates the simulation of a PWFA with realistic parameters in the bubble regime. The simulation is specified by 4 particle species, namely, the drive beam (driver), the witness beam (beam), the plasma electron (plasma_e), and the plasma ion (plasma_p). The species parameters are summarized in the following table.

Species Parameters
driver γ = 48923; N = 30x109; σz = 30 μm; σx = σy = 3.45 μm
beam γ = 48923; N = 10x109; σz = 10 mm; σx = σy = 0.1 mm
plasma_e n = 1x1023 m-3
plasma_p n = 1x1023 m-3

The separation between the driver and witness beams is set to 115 μm.

The simulation can be done in the lab frame as well as in a Lorentz-boosted frame, where the computational costs can be substantially reduced. In the lab frame simulation, there is no need to include the plasma ions since they are stationary during the time scale of concern. In a boosted frame, this is no longer valid as they have finite velocities. Therefore plasma_p is also defined in the example without loss of generality.

The simulation parameters are defined in the lab frame, which includes the longitudinal and transverse dimensions of the simulation box, and the diagnostic time snapshots for back-transformed data to the lab frame from a boosted-frame simulation. Thus, when one has defined the grid size in the lab frame, the longitudinal resolution remains the same but the transverse grid sizes need to be adjusted approximately in the boosted frame with the following relation

The time step in the boosted frame is increased as

Here γ is the Lorentz factor of the boosted frame. In the boosted frame with β close to 1 in the forward direction of the beam propagation, the beam length and plasma length change, respectively, according to

Define the total run time of a simulation by the full transit time of the beam through the plasma, and they are given by, respectively in the lab and boosted frame

assuming the plasma moving at c opposite to the beam direction. Thus the number of time steps in the lab and boosted frame are

It should be pointed out that this example is performed in 2D x-y geometry, which is not equivalent to the realistic simulation. However, the fast turnaround time in 2D simulation helps determine the numerical requirements and the optimized boosted frame, which can then be used in 3D simulations.

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 WarpX documentation

 		
 Building/installing WarpX

 		
 Downloading the source code

 		
 Compiling WarpX as an executable

 		
 Installing WarpX as a Python package

 		
 Advanced building instructions

 		
 Building the spectral solver

 		
 Building WarpX for Cori (NERSC)

 		
 Building WarpX for Summit-dev (OLCF)

 		
 Running WarpX as an executable

 		
 How to run a new simulation

 		
 Example input files

 		
 Beam-driven acceleration

 		
 Laser-driven acceleration

 		
 Plasma mirror

 		
 Uniform plasma

 		
 Input parameters

 		
 Overall simulation parameters

 		
 Setting up the field mesh

 		
 Distribution across MPI ranks and parallelization

 		
 Math parser and user-defined constants

 		
 Particle initialization

 		
 Laser initialization

 		
 Numerics and algorithms

 		
 Diagnostics and output

 		
 Checkpoints and restart

 		
 Profiling the code

 		
 Profiling with AMREX’s built-in profiling tools

 		
 Profiling the code with Intel Advisor on NERSC

 		
 Running WarpX from Python

 		
 How to run a new simulation

 		
 Example input files

 		
 Beam-driven acceleration

 		
 Laser-driven acceleration

 		
 Visualizing the simulation results

 		
 Visualization with yt

 		
 Installation

 		
 Visualizing the data

 		
 Further information

 		
 Visualization with Visit

 		
 PyQt-based visualization GUI: PICViewer

 		
 Main features

 		
 Required software

 		
 Installation

 		
 To install manually

 		
 To run

 		
 In situ Visualization with SENSEI

 		
 Compiling with GNU Make

 		
 ParmParse Configuration

 		
 Obtaining SENSEI

 		
 Theoretical background

_images/sample_image.png
Ez (50258.0 fs)

> tstep 1 1 v
50258.0 fs Plot 50
zmin zmax £ 0
14781.4 15063.4 x
xmin xmax -50
-100.0 96.9
-100
AMR Level Bx 14800 14900 15000
. z (um)
0 : : -
O paricie2 Jz (50258.0 fs)
lab frame x-pz
WA P log equal aspect s0
cartesian line rect £
S o
20 slice in 3D x
x xz yz -50
b b particle Wt
o)
stride . —100
Visit close 14800 14900 15000
Ay=013 z (um)
y=-1.56
particle2 x-pz (50258.0 fs)
1 JEE IS animation 3 s #ofrow
= 50
png .mp4 syncpanel 2 ° #of column
g
Config. load 2
Config. save ~50
o
~100 -
-1 0 1
pz (c)
(x1,x2)=(14790.6, -74.4) ‘ o ‘

(x1,x2,Val)=(14860.5, -17.4, 3.7e+01)

1e10 particle2 x-z (50258.0 fs)

4 -
3 107
2 50
1z 10°
£

o 2 O
-1 = 10°
2 -50
-3 104

-100

14800 14900 15000
z (um)

particle0 x-z (50258.0 fs)

leld

14800 14900
z (um)

Ez (50258.0 fs)

15000

108

107 50
10° § °
10° -50

-100
-100

X (um)

»

_static/ajax-loader.gif

_images/Ez.png

